- 圆锥曲线的综合问题
- 共478题
20.过圆上一点
作圆的切线l,且直线l与椭圆C:
相切,椭圆的离心率为
,椭圆的两个焦点坐标分别为
.
(1)求椭圆C的方程;
(2)若在椭圆上存在一点P,使得的面积为
,求此时满足
的实数k的值.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20.已知的边
所在直线的方程为
,
满足
,点
在
所在直线上且
.
(Ⅰ)求外接圆的方程;
(Ⅱ)一动圆过点,且与
的外接圆外切,求此动圆圆心的轨迹
的方程;
(Ⅲ)过点斜率为
的直线与曲线
交于相异的
两点,满足
,求
的取值范围.
正确答案
解:(Ⅰ),从而直线AC的斜率为
.
所以AC边所在直线的方程为.即
.
由得点
的坐标为
,
又.
所以外接圆的方程为:
.
(Ⅱ)设动圆圆心为,因为动圆过点
,且与
外接圆
外切,
所以,即
.
故点的轨迹是以
为焦点,实轴长为
,半焦距
的双曲线的左支.
从而动圆圆心的轨迹方程为
.
(Ⅲ)直线方程为:
,设
由得
解得:
故的取值范围为
解析
解析已在路上飞奔,马上就到!
知识点
20. 如图,是抛物线为
上的一点,弦SC,SD分别交x轴于A,B两点,且SA=SB。
(1)求证:直线CD的斜率为定值;
(2)延长DC交x轴于点E,若,求
的值。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
19.已知椭圆、抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点
,从每条曲线上取两个点,将其坐标记录于下表中:
(1)求的标准方程;
(2)过曲线的焦点
的直线
与曲线
交于
两点,与
轴交于
点,
若,
,求证:
为定值。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
21.已知抛物线,椭圆
经过点
,它们在
轴上有共同的焦点,椭圆对称轴为坐标轴.
(1)求椭圆的标准方程
(2)设为正实数
,当点
在椭圆
上运动时,求
的最小值
.
正确答案
(1)焦点,∴
,
,
∴ 椭圆的方程为
(2)设
∴
当时,
当时,
,
∴
解析
解析已在路上飞奔,马上就到!
知识点
13.设分别是椭圆的左、右焦点,与直线
相切的⊙
交椭圆于点E,且点E是直线
与⊙
的切点,则椭圆的离心率为
。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
9. 在抛物线上取横坐标为
,
的两点,经过两点引一条割线,有平行于该割线的一条直线同时与该抛物线和圆
相切,则抛物线的顶点坐标是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20.已知椭圆C:的离心率为
,以原点O为圆心,椭圆的短半轴长为半径的圆与直线
相切
(Ⅰ)求椭圆C的标准方程
(Ⅱ)若直线L:与椭圆C相交于A.B两点,且
求证:的面积为定值
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20.已知点在椭圆
上,过椭圆
的右焦点
的直线
与椭圆
交于
两点。
(1)求椭圆的方程;
(2)若是椭圆
经过原点
的弦,且
,
,试判断
是否为定值?若
为定值,请求出这个定值;若
不是定值,请说明理由。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
21.已知点P(4,4),圆C:与椭圆E:
有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.
(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求的取值范围.
正确答案
(1)点A代入圆C方程,得.∵m<3,∴m=1
圆C:.设直线PF1的斜率为k,则直线PF1的方程为:
,
即.∵直线PF1与圆C相切,∴
.解得
.
当k=时,直线PF1与x轴的交点F1的横坐标为
,不合题意,舍去.
当k=时,直线PF1与x轴的交点F1的横坐标为-4,∴c=4.
,
2a=|AF1|+|AF2|=,
,a2=18,b2=2.
椭圆E的方程为: 2
(2),设Q(x,y),
,
.
∵,即
,而
,∴-18≤6xy≤18
所以,的取值范围是[0,36]
的取值范围是[-6,6].∴
的取值范围是[-12,0]
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析