热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

20.设椭圆的左、右顶点分别为A,B,点P在椭圆上且异于A,B两点,O为坐标原点.

(1)若直线AP与BP的斜率之积为,求椭圆的离心率;

(2)若|AP|=|OA|,证明直线OP的斜率k满足

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的几何性质直线与椭圆的位置关系圆锥曲线中的范围、最值问题
1
题型:填空题
|
填空题 · 5 分

10.已知椭圆和圆,若上存在点,使得过点引圆的两条切线,切点分别为,满足,则椭圆的离心率的取值范围是(    )

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的几何性质圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 16 分

18.设椭圆的右焦点为,直线轴交于点,若(其中为坐标原点)。

(1)求椭圆的方程;

(2)设是椭圆上的任意一点,为圆的任意一条直径(为直径的两个端点),求的最大值。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

平面向量数量积的运算椭圆的定义及标准方程圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

21.已知椭圆的离心率,且椭圆过点

(1)求椭圆的方程;

(2)设不过原点的直线与该椭圆交于两点,满足直线的斜率依次成等比数列,求面积的取值范围。

正确答案

(1)

(2)

解析

解析已在路上飞奔,马上就到!

知识点

等比数列的性质及应用椭圆的定义及标准方程圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 16 分

18. 在平面直角坐标系xOy中,椭圆C:(a>b>0)的上顶点到焦点的距离为2,离心率为

(1)求a,b的值。

(2)设P是椭圆C长轴上的一个动点,过点P作斜率为k的直线l交椭圆C于A、B两点。

(ⅰ)若k=1,求△OAB面积的最大值;

(ⅱ)若PA2+PB2的值与点P的位置无关,求k的值。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型: 单选题
|
单选题 · 5 分

8.抛物线y=x2与直线x-y+2=0构成封闭平面区域(含边界)为D.若曲线x2-2ax+y2-4y+a2+ =0与D有公共点,则a的最小值为(  ).

A

B-

C-

D-

正确答案

C

解析

曲线

即为,

其圆心坐标为E(a,2),半径

由图可知,当时,

圆与点D有公共点;

当a<0时,要圆与点D有公共点,

只需圆心到直线l:x-y+2=0的距离

则a的最小值为-

知识点

直线与抛物线的位置关系圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

21.如图,焦距为2的椭圆E的两个顶点分别为,且共线.

(Ⅰ)求椭圆E的标准方程;

(Ⅱ)若直线与椭圆E有两个不同的交点PQ,且原点O总在以PQ为直径的

圆的内部,求实  数m的取值范围.

正确答案

解:

(Ⅰ)设椭圆E的标准方程为,由已知得

,∵共线,   ∴,又

, ∴椭圆E的标准方程为

(Ⅱ)设,把直线方程代入椭圆方程

消去y,得,,

,     

(*)

∵原点O总在以PQ为直径的圆内,∴,即

,依题意且满足(*)

故实数m的取值范围是

解析

解析已在路上飞奔,马上就到!

知识点

平行向量与共线向量向量在几何中的应用椭圆的定义及标准方程圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

21.如图,椭圆C的焦点在x轴上,左、右顶点分别为A1A,上顶点为B.抛物线C1C2分别以A、B为焦点,其顶点均为坐标原点OC1C2相交于直线上一点P

(1)  求椭圆C及抛物线C1C2的方程;

(2)  若动直线l与直线OP垂直,且与椭圆C交于不同两点M、N已知点,求的最小值.

正确答案

(1) 由题意得Aa,0),B(0,

∴ 抛物线C1的方程可设为;抛物线C2的方程可设为

代入a = 4

∴ 椭圆方程为,抛物线C1,抛物线C2

(2)由题意可设直线l的方程为

消去y

Mx1y1),Nx2y2),则

∵ 

∴ 当时,其最小值为

解析

解析已在路上飞奔,马上就到!

知识点

平面向量数量积的运算椭圆的定义及标准方程抛物线的标准方程和几何性质圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 16 分

18. 平面直角坐标系中,已知椭圆的离心率为,左、右焦点分别是,以为圆心以3为半径的圆与以为圆心以1为半径的圆相交,且交点在椭圆上.

(1)求椭圆的方程;

(2)过椭圆上一动点的直线,过F2x轴垂直的直线记为,右准线记为

①设直线与直线相交于点M,直线与直线相交于点N,证明恒为定值,并求此定值。

②若连接并延长与直线相交于点Q,椭圆的右顶点A,设直线PA的斜率为,直线QA的斜率为,求的取值范围.

正确答案

见解析

解析

(1)由题意知 ,则 ,又 可得 ,

所以椭圆C的标准方程为.

(2)①M  N

②点),点Q

==

∵点P在椭圆C上,    ∴

==

的取值范围是

考查方向

本题考查了椭圆方程的求法,离心率,圆方程等知识的运用,定值的求法,斜率的表示方法等。

解题思路

本题考查导数的性质,解题步骤如下:

(1)根据离心率和几何特点,求出椭圆方程

(2)表示M,N进而得

(3)表示,进而得的取值范围.

易错点

点M,N表示不当

知识点

椭圆的定义及标准方程圆锥曲线中的范围、最值问题圆锥曲线的定点、定值问题
1
题型:简答题
|
简答题 · 13 分

20.已知椭圆C的中心在坐标原点O,左焦点为F(-l,0),离心率为

(1)求椭圆C的标准方程;

(2)过点F的直线,与椭圆C交于A、B两点,设(其中1<入<3),求的取值范围。

正确答案

(1)

(2)

解析

本题属于圆锥曲线中的基本问题,题目的难度是逐渐由易到难,

(1)直接按照步骤来求

(2)要注意对参数的讨论.

(1)

(2)由(其中1<入<3)知,直线l不水平,

l:x=my-1,A(x1,y1),B(x2,y2)联立:

消x得:(2+m2)y2-2my-1=0,

①由(其中1<入<3)

得y1= -λy2……② 

令t=,则0<t<,

……③。

=x1x2+y1y2=(my1-1)(my2-1)+y1y2=(1+m2)y1y2-m(y1+y2)+1=

将③代入,得=

从而

考查方向

本题考查了椭圆的标准方程和直线与椭圆的位置关系、平面向量等知识点.

解题思路


易错点

1、第二问中的易丢对a的分类讨论。

知识点

椭圆的定义及标准方程椭圆的几何性质圆锥曲线中的范围、最值问题
百度题库 > 高考 > 理科数学 > 圆锥曲线的综合问题

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题