热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

20. 已知F(,0)为抛物线(p>0)的焦点,点N()(>0)为其上一点,点M与点N关于x轴对称,直线与抛物线交于异于M,N的A,B两点,且|NF|=

(Ⅰ)求抛物线方程和N点坐标;

(Ⅱ)判断直线中,是否存在使得面积最小的直线,若存在,求出直线的方程和面积的最小值;若不存在,说明理由.

正确答案

见解析

解析

(Ⅰ)由题意,则

故抛物线方程为

由|NF|=,则

所以N(2,2)。

(Ⅱ)由题意知直线的斜率不为0,则可设直线的方程为

联立方程组,得

设两个交点A(),B()(≠±2,≠±2),则

,整理得

此时,恒成立。

故直线的方程可化为,从而直线过定点E(3,-2)。

因为M(2,-2),

所以M,E所在直线平行x轴,

所以△MAB的面积当t=-2时有最小值为,此时直线的方程为

考查方向

抛物线的性质与特征,圆锥曲线中的最值问题

解题思路

建立适当的坐标系,利用直线斜率之间的关系建立方程,进而求解,与抛物线联立成方程组,整理可得。

易错点

计算能力弱,找不到面积最小时候的情况

知识点

抛物线的标准方程和几何性质圆锥曲线中的范围、最值问题圆锥曲线中的探索性问题
1
题型: 单选题
|
单选题 · 5 分

11.抛物线)的焦点为,已知点为抛物线上的两个动点,且满足.过弦的中点作抛物线准线的垂线,垂足为,则的最大值为(   )

A

B1

C

D2

正确答案

A

解析

过点A、B作准线的垂线,垂足为P、Q,AP=AF,BQ=BF,由图可知,

,在三角形ABF中,由余弦定理可知:,所以,再由基本不等式可知:,代入上式得,化简得,因此选择A选项。

考查方向

本题主要考查了抛物线的定义、方程、几何性质、余弦定理以及均值不等式等知识点,同时考查了综合法、转化法等思想方法以及学生的计算能力。

解题思路

将MN通过转化放入到一个三角形中,通过解三角形的知识进行解决。

易错点

本题容易因为对抛物线的性质记忆不清楚而导致题目无法进行。

知识点

抛物线的定义及应用圆锥曲线中的范围、最值问题
1
题型:简答题
|
简答题 · 12 分

20.已知椭圆的左右焦点分别为F1,F2,离心率为,点M在椭圆上,且满足MF2x轴, .

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线y=kx+2交椭圆于A,B两点,求△ABOO为坐标原点)面积的最大值.

正确答案

(Ⅰ)

(Ⅱ)

解析

(I)由已知得,又由,可得

得椭圆方程为,因为点在第一象限且轴,可得的坐标为,由,解得,所以椭圆方程为       

(II)设 将代入椭圆,可得

 ,可得,则有

所以因为直线与轴交点的坐标为

所以的面积

 , 由①知

所以时,面积最大为.

考查方向

椭圆的方程、几何性质和直线与椭圆的位置关系中的面积问题

解题思路

本题考查了椭圆的方程、几何性质和直线与椭圆的位置关系中的面积问题,其中面积是本题解得的难点,解答时应结合图形的特征把的面积分解为两个同底的三角形,两个三角形的底边都是,高的和为,这是本题韦达定理应用的技巧所在,最好通过对面积的函数关系变形,在形式上达到积为定值的目的,通过基本不等式求出面积的最大值.

易错点

本题中主要是在求点坐标时易错,在联立方程用韦达定理时运算量大易错。

知识点

椭圆的定义及标准方程直线与椭圆的位置关系圆锥曲线中的范围、最值问题
1
题型: 单选题
|
单选题 · 5 分

9.已知F是抛物线y2=4x的焦点,点A,B在该抛物线上且位于x轴的两侧,OA⊥OB(其中O为坐标原点),则△AOB与△AOF面积之和的最小值是(  )

A16

B8

C8

D18

正确答案

C

解析

设直线AB的方程为:x=ty+m,

点A(x1,y1),B(x2,y2),直线AB与x轴的交点为M(m,0),

x=ty+m代入y2=4x,可得y2﹣4ty﹣4m=0,

根据韦达定理有y1•y2=﹣4m,

∵OA⊥OB,                ∴=0,

∴x1•x2+y1•y2=0,从而(y1y22+y1•y2=0,

∵点A,B位于x轴的两侧,

∴y1•y2=﹣16,故m=4.

不妨令点A在x轴上方,则y1>0,

又F(1,0),

∴S△ABO+S△AFO=×4×(y1﹣y2)+×y1=y1+≥8

当且仅当y1=,即y1=时,取“=”号,

∴△ABO与△AFO面积之和的最小值是8

故选:C.

考查方向

本题主要考查抛物线的定义及直线与抛物线综合应用,也在题目中考查了向量在圆锥曲线中的应用等知识,意在考查考生的运算求解能力和分析解决问题能力,在近几年的各省高考题出现的频率较高,常与向量,基本不等式等知识点交汇处命题,较难。

解题思路

1、先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及=0,得到y1•y2。2、最后将面积之和表示出来,得到最值问题。

易错点

1、设直线方程时未考虑到斜率是否存在而出错。2、再把S△ABO+S△AFO转化成坐标形式时容易出错。

知识点

抛物线的标准方程和几何性质圆锥曲线中的范围、最值问题
1
题型:填空题
|
填空题 · 16 分

22.如图,

曲线由两个椭圆和椭圆组成,

成等比数列时,称曲线为“猫眼曲线”.

(1)若猫眼曲线过点,且的公比为,求猫眼曲线的方程;

(2)对于题(1)中的求猫眼曲线,任作斜率为且不过原点的直线与该曲线相交,交椭圆所得弦的中点为,交椭圆所得弦的中点为,求证:为与无关的定值;

(3)若斜率为的直线为椭圆的切线,且交椭圆于点为椭圆上的任意一点(点与点不重合),求面积的最大值.

正确答案

(1)

(2)略;

(3)

解析

(1)

,                            

;              

(2)设斜率为的直线交椭圆于点

线段中点

  

存在且

                        

同理, 得证                                          

(3)设直线的方程为联立方程

化简得

                                 

联立方程

化简得

                                        

两平行线间距离:  

                                     

的面积最大值                

注:若用第一小题结论,

算得:

的面积最大值为              

考查方向

本题主要考查椭圆的标准方程与性质,考查椭圆与直线的位置关系,考查化简运算能力与对新定力的概念的即时学习能力.

解题思路

(1)根据定义求得猫眼曲线Γ的方程;

(2)设交点,由中点公式可得,联立方程,化简可得,同理可得,两式相除消去,即证为与无关的定值

(3)设直线的方程为,联立方程,化简,从而可得的方程,同理可得的方程,再利用两平行线间距离表示三角形的高,再求|AB|,从而求得最大面积.

易错点

1.对新定义的“猫眼曲线”的概念的不理解,即时学习能力不够;

2.解析几何中繁琐的化简容易出错,特别是带字母的化简运算.

知识点

椭圆的定义及标准方程圆锥曲线中的范围、最值问题圆锥曲线的定点、定值问题
1
题型:填空题
|
填空题 · 12 分

20.在平面直角坐标系中,已知椭圆的离心率,且椭圆上一点到点的距离的最大值为4.

(Ⅰ)求椭圆的方程;

(Ⅱ)设为抛物线上一动点,过点作抛物线的切线交椭圆两点,求面积的最大值.

正确答案

(Ⅰ)

(Ⅱ)

解析

(Ⅰ)因为,所以

则椭圆方程为

,则

时,有最大值为

解得,则

所以椭圆的方程是

(Ⅱ)设曲线上的点,因为

所以直线的方程为:.       ①

将①代入椭圆方程中整理,

则有

所以

设点到直线的距离为,则

所以的面积

时取到“=”,经检验此时,满足题意.

综上,面积的最大值为

考查方向

本题考查了直线与圆锥曲线的关系,椭圆的标准方程以及二次函数求最值。

解题思路

易错点

第一问未能利用|MQ|最大值求出b;第二问运算量较大,代数式化简容易出错。

知识点

椭圆的定义及标准方程椭圆的几何性质抛物线的标准方程和几何性质圆锥曲线中的范围、最值问题
1
题型:简答题
|
简答题 · 16 分

22.如图,曲线由两个椭圆和椭圆组成,当成等比数列时,称曲线为“猫眼曲线”.

(1)若猫眼曲线过点,且的公比为,求猫眼曲线的方程;

(2) 对于题(1)中的求猫眼曲线,任作斜率为且不过原点的直线与该曲线相交,交椭圆所得弦的中点为,交椭圆所得弦的中点为,求证:为与无关的定值;

(3) 若斜率为的直线为椭圆的切线,且交椭圆于点为椭圆上的任意一点(点与点不重合),求面积的最大值.

正确答案

(1) 

(2)证法略;

(3)

解析

(1)

(2)设斜率为的直线交椭圆于点,线段中点

,得

存在且,且

 ,即

同理,

 得证

(3)设直线的方程为

两平行线间距离:

的面积最大值为

注:若用第一小题结论,算得:

的面积最大值为

考查方向

本题考查了椭圆的定义,方程的求法,直线与椭圆的位置关系,在近几年的各省高考题出现的频率非常高,常与求函数值域等知识点交汇命题。

解题思路

本题考查了椭圆的定义,方程的求法,直线与椭圆的位置关系,解题步骤如下:

(1)待定系数法求出椭圆方程;

(2)点差法推导直线的斜率的关系;

(3)利用设而不求,弦长公式求解三角形面积,

易错点

注意焦点位置的变化,区分几何意义的转变。

知识点

椭圆的定义及标准方程圆锥曲线中的范围、最值问题圆锥曲线的定点、定值问题
1
题型:简答题
|
简答题 · 12 分

20.椭圆,作直线交椭圆于两点,为线段的中点,为坐标原点,设直线的斜率为,直线的斜率为.

(1)求椭圆的离心率;

(2)设直线轴交于点,且满足,当的面积最大时,求椭圆的方程.

正确答案

(1)

(2)

解析

试题分析:本题属于椭圆的几何性质、直线与椭圆的位置关系、基本不等式.等知识点的综合应用问题,属于拔高题,第二问不容易得分,解析如下:

(1)设,代入椭圆C的方程有:

,     、

两式相减:

联立两个方程有

解得:.

(2)由(1)知,得

可设椭圆C的方程为:

设直线l的方程为:,代入椭圆C的方程有

因为直线l与椭圆C相交,所以

由韦达定理:.

,所以

代入上述两式有:

所以

当且仅当时,等号成立,此时,代入,有成立,

所以所求椭圆C的方程为:.

考查方向

本题考查了椭圆的几何性质、直线与椭圆的位置关系、基本不等式等知识点。

解题思路

(1)设,并分别代入椭圆方程中,然后两式相减,利用直线斜率公式求得,从而求得离心率;

(2)设椭圆的方程为:,直线的方程为:,然后联立椭圆与直线的方程得到关于的二次方程,然后由,及利用韦达定理得出的表达式,从而利用基本不等式求得椭圆的方程.

易错点

相关知识点不熟容易证错。

知识点

直线的倾斜角与斜率椭圆的定义及标准方程椭圆的几何性质圆锥曲线中的范围、最值问题
1
题型:简答题
|
简答题 · 16 分

已知椭圆上两个不同的点A,B关于直线对称.

(1)若已知为椭圆上动点,证明:

(2)求实数的取值范围;

(3)求面积的最大值(为坐标原点).

正确答案

(1)设,

 于是=      

所以,当时,.即

(2)由题意知,可设直线的方程为.

消去,得

因为直线与椭圆有两个不同的交点,

所以,,即                 

 ①将中点代入直线方程解得           

②由①②得(3)令,即

 

到直线的距离为的面积为

所以

当且仅当时,等号成立.

面积的最大值为.

解析

本题属于解析几何的综合应用题,题目的难度是偏难,本题的关键是:

(1)、利用两点间的距离公式和点在曲线上的定义求出线段的范围;

(2)、利用设而不求法和中点坐标公式,求出m,b之间的关系,从而求出m的取值范围;

(3)、利用三角形面积公式和点到直线的距离公式,求出面积的表达式

考查方向

本题考查了椭圆与直线的位置关系、函数的取值范围问题的综合应用

易错点

1、,的讨论,求出2、利用因为直线与椭圆有两个不同的交点,所以很容易忘记

知识点

椭圆的几何性质直线与椭圆的位置关系圆锥曲线中的范围、最值问题
1
题型:简答题
|
简答题 · 13 分

20.已知椭圆C的中心在坐标原点O,左焦点为F(-l,0),离心率为

(1)求椭圆C的标准方程;

(2)过点F的直线,与椭圆C交于A、B两点,设(其中1<入<3),求的取值范围,

正确答案

(1);(2)

解析

试题分析:本题属于圆锥曲线中的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求(2)要注意对参数的讨论.

(1)

(2)由(其中1<入<3)知,直线l不水平,设l:x=my-1,A(x1,y1),B(x2,y2)

联立:消x得:(2+m2)y2-2my-1=0,得

(其中1<入<3)得y1= -λy2……② 则

令t=,则0<t<,得……③。

=x1x2+y1y2=(my1-1)(my2-1)+y1y2=(1+m2)y1y2-m(y1+y2)+1=

将③代入,得=,从而

考查方向

本题考查了椭圆的标准方程和直线与椭圆的位置关系、平面向量等知识点.

解题思路

本题考查圆锥曲线与直线的位置关系,解题步骤如下:

(1)利用e和c求a,b。

(2)联立直线与椭圆方程求解。

易错点

(1)第二问中的易丢对a的分类讨论。

知识点

平面向量数量积的运算椭圆的定义及标准方程圆锥曲线中的范围、最值问题
百度题库 > 高考 > 理科数学 > 圆锥曲线的综合问题

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题