热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

已知椭圆抛物线的焦点均在轴上,的中心和的顶点均为原点从每条曲线上取两个点,将其坐标记录于下表中:

(1)求的标准方程;

(2)设斜率不为的动直线有且只有一个公共点且与的准线相交于点试探究:在坐标平面内是否存在定点使得以为直径的圆恒过点若存在,求出点的坐标;若不存在,请说明理由。

正确答案

见解析

解析

解析:(1)设的标准方程分别为:

代入抛物线方程中得到的解相同,…………………………2分,

在椭圆上,代入椭圆方程得的标准方程分别为             …………………………5分

(2)设直线的方程为将其代入消去并化简整理得

相切,

…………………………7分,

设切点又直线的准线的交点为直径的圆的方程为

…………………………10分,

化简并整理得恒成立,故即存在定点合题意。                …………………………12分

知识点

椭圆的定义及标准方程抛物线的标准方程和几何性质圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 15 分

如图,两条相交线段的四个端点都在椭圆上,其中,直线的方程为,直线的方程为

(1)若,求的值;

(2)探究:是否存在常数,当变化时,恒有

正确答案

见解析

解析

(1)由

解得

因为,所以

,则

化简得,……5分

,联立方程组,解得,或

因为平分,所以不合,故

(2)设,由,得

若存常数,当变化时,恒有,则由(1)知只可能

①当时,取等价于

,此式恒成立。

所以,存常数,当变化时,恒有

②当时,取,由对称性同理可知结论成立。

故,存常数,当变化时,恒有

知识点

圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 14 分

已知椭圆()的短轴长为2,离心率为,过点M(2,0)的直线与椭圆相交于两点,为坐标原点。

(1)求椭圆的方程;

(2)求的取值范围;

(3)若点关于轴的对称点是,证明:直线恒过一定点。

正确答案

见解析。

解析

(1)易知,故.

故方程为.                                     (3分)

(2)证明:设,与椭圆的方程联立,消去

. 由△>0得.

,则.

=

,∴

故所求范围是.                                        (8分)

(3)由对称性可知N,定点在轴上。

直线AN:,令得:

,

∴直线过定点.  (13分)

知识点

平面向量数量积的运算向量在几何中的应用椭圆的定义及标准方程圆锥曲线的定点、定值问题
1
题型:简答题
|
简答题 · 12 分

20.已知椭圆C:)的离心率,左右焦点分别为,抛物线的焦点F恰好是该椭圆的一个焦点。

(1)求椭圆方程;

(2)过椭圆的左顶点A作两条弦分别交椭圆于两点,满足,当点在椭圆上运动时,直线是否经过轴上的一定点,若过定点,请给出证明,并求出定点坐标;若不过定点,请说明理由。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

量积判断两个平面向量的垂直关系椭圆的定义及标准方程圆锥曲线的定点、定值问题圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 13 分

20. 已知左焦点为的椭圆过点.过点分别作斜率为的椭圆的动弦,设分别为线段的中点.

(1)求椭圆的标准方程;

(2)若为线段的中点,求

(3)若,求证直线恒过定点,并求出定点坐标.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程圆锥曲线的定点、定值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 13 分

19.已知椭圆过点P(3,1),其左、右焦点分别为F1,F2。且

(1)求椭圆E的方程;

(2)若M,N是直线上的两个动点,且,则以MN为直径的圆C是否过定点?请说明理由。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程圆锥曲线的定点、定值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 18 分

23.给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”。若椭圆的一个焦点为,其短轴上的一个端点到的距离为

(1)求椭圆的方程和其“准圆”方程;

(2)点是椭圆的“准圆”上的一个动点,过点作直线,使得与椭圆都只有一个交点,且分别交其“准圆”于点

①当为“准圆”与轴正半轴的交点时,求的方程;

②求证:为定值

正确答案

(1)

所以,椭圆方程:

准圆方程:

(2)①易知且直线斜率存在,

设直线为

联立

因为椭圆与直线有且只有一个交点,

所以,因此

所以的方程为

②<ⅰ>当的斜率存在时,设点

设直线

---(*)

同理,联立和椭圆方程可得:---(**)

由(*)(**)可知,是方程的两个根

因此是准圆的直径,所以

<ⅱ>当中有一条斜率不存在时,,此时

所以

解析

解析已在路上飞奔,马上就到!

知识点

直线的一般式方程椭圆的定义及标准方程圆锥曲线的定点、定值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

22.已知抛物线,过点的直线与抛物线交于两点,且直线与轴交于点.

(1)求证:成等比数列;

(2)设,试问是否为定值,若是,求出此定值;若不是,请说明理由.

正确答案

解:(1)设直线的方程为:

联立方程可得得:               ①

,则  ②

,∴

成等比数列           

(2)由得,

即得:,则

由(1)中②代入得,故为定值且定值为

解析

解析已在路上飞奔,马上就到!

知识点

等比数列的判断与证明抛物线的标准方程和几何性质圆锥曲线的定点、定值问题圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 14 分

20.已知椭圆和圆,过椭圆上一点引圆的两条切线,切点分别为

(1)(ⅰ)若圆过椭圆的两个焦点,求椭圆的离心率的值;

         (ⅱ)若椭圆上存在点,使得,求椭圆离心率的取值范围;

(2)设直线轴、轴分别交于点,问当点P在椭圆上运动时,是否为定值?请证明你的结论.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的几何性质圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 14 分

20.如图,已知抛物线的准线为,焦点为,圆的圆心在轴的正半轴上,圆轴相切,过原点作倾斜角为的直线,交直线于点,交圆于不同的两点,且

(1)求圆和抛物线的方程;

(2)若为抛物线上的动点,求的最小值;

(3)过直线上的动点向圆作切线,切点分别为,求证:直线恒过一个定点,并求该定点的坐标.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

圆的标准方程抛物线的标准方程和几何性质圆锥曲线中的范围、最值问题圆锥曲线的定点、定值问题直线、圆及圆锥曲线的交汇问题
百度题库 > 高考 > 理科数学 > 圆锥曲线的综合问题

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题