- 函数模型及其综合应用
- 共70题
要测定古物的年代,常用碳的放射性同位素的衰减来测定:在动植物的体内都含有微量的,动植物死亡后,停止了新陈代谢,不再产生,且原有的含量的衰变经过5570年(的半衰期),它的残余量只有原始量的一半,若的原始含量为,则经过年后的残余量与之间满足。
(1) 求实数的值;
(2) 测得湖南长沙马王堆汉墓女尸中的残余量约占原始含量的76.7%,试推算马王堆古墓的年代(精确到100年)。
正确答案
(1)
(2)2100多年前
解析
(1)由题意可知,当时,,即,
解得。
(2)∵古墓中女尸的残余量约占原始含量的76.7%,
∴,即,
解得。
∴由此可推测古墓约是2100多年前的遗址。
知识点
某种商品每件进价12元,售价20元,每天可卖出48件,若售价降低,销售量可以增加,且售价降低元时,每天多卖出的件数与成正比,已知商品售价降低3元时,一天可多卖出36件。
(1)试将该商品一天的销售利润表示成的函数;
(2)该商品售价为多少元时一天的销售利润最大?
正确答案
见解析
解析
(1)由题意可设,每天多卖出的件数为,∴,∴
又每件商品的利润为元,每天卖出的商品件数为
∴该商品一天的销售利润为
(2)由
令可得或
当变化时,、的变化情况如下表:
∴当商品售价为16元时,一天销售利润最大,最大值为432元
知识点
18.某房地产开发公司计划在一楼区内建造一个长方形公园,公园由长方形的休闲区和环公园人行道(阴影部分)组成。已知休闲区的面积为平方米,人行道的宽分别为米和米(如图)
(1)若设休闲区的长和宽的比,求公园所占面积关于的函数的解析式;
(2)要使公园所占面积最小,休闲区的长和宽(长>宽)该如何设计?
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20. 某地区预计明年从年初开始的前x个月内,对某种商品的需求总量(万件)与月份x的近似关系为。
(1)写出明年第x个月的需求量(万件)与月份x的函数关系式,并求出哪个月份的需求量超过1.4万件;
(2)如果将该商品每月都投放市场p万件,要保持每月都满足市场需求,则p至少为多少万件。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
18.某跨国饮料公司在对全世界所有人均GDP(即人均纯收入)在0.5千美元~8千美元的地区销售该公司饮料的情况的调查中发现:人均GDP处在中等的地区对该饮料的销售量最多,然后向两边递减。
(1)下列几个模拟函数中表示人均GDP,单位:千美元,表示年人均饮料的销量,单位:升),用哪个模拟函数来描述人均饮料销量与地区的人均关系更合适?说明理由。
① ②
③,④。
(2)若人均GDP为1千美元时,年人均饮料的销量为2升;若人均GDP为4千美元时,年人均饮料的销量为5升,把(1)中你所选的模拟函数求出来,并求出各个地区中,年人均饮料的销量最多是多少?
(3)因为饮料在国被检测出杀虫剂的含量超标,受此事件的影响,饮料在人均GDP低于3千美元和高于6千美元的地区销量下降5%,其它地区的销量下降10%,根据(2)所求出的模拟函数,求出各个地区中,年人均饮料的销量最多是多少?
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
18.如图,ABCD是正方形空地,边长为30m,电源在点P处,点P到边AD,AB距离分别为m,m.某广告公司计划在此空地上竖一块长方形液晶广告屏幕,.线段MN必须过点P,端点M,N分别在边AD,AB上,设AN=x(m),液晶广告屏幕MNEF的面积为S(m2).
(1)求S关于x的函数关系式及该函数的定义域;
(2)当x取何值时,液晶广告屏幕MNEF的面积S最小?
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
19. 张家界某景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值万元与投入万元之间满足:为常数。当万元时,万元;当万元时,万元。(参考数据:)
(1)求的解析式;
(2)求该景点改造升级后旅游利润的最大值。(利润=旅游增加值-投入)
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20.甲、乙两公司同时开发同一种新产品,经测算,对于函数,当甲公司投入x万元作宣传时,若乙公司投入的宣传小于万元,则乙公司对这一新产品的开发有失败的风险,否则没有失败的风险;当乙公司投入x万元作宣传时,若甲公司投入的宣传费小于万元,则甲公司对这一新产品的开发有失败的风险,否则没有失败的风险。
(1)试解释的实际意义;
(2)设,甲、乙公司为了避免恶性竞争,经过协商,同意在双方均无失败风险的情况下尽可能少地投入宣传费用,问甲、乙两公司各应放入多少宣传费?
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20.为了加强环保建设,提高社会效益和经济效益,长沙市计划用若干时间更换一万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,替换车为电力型和混合动力型车.今年初投入了电力型公交车128辆,混合动力型公交车400辆;计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a辆.
(1)求经过n年,该市被更换的公交车总数S(n);
(2)若该市计划7年内完成全部更换,求a的最小值.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20.某工厂去年某产品的年产量为100万只,每只产品的销售价为10元,固定成本为8元.今年,工厂第一次投入100万元(科技成本),并计划以后每年比上一年多投入100万元(科技成本),预计产量年递增10万只,第n次投入后,每只产品的固定成本为(k>0,k为常数,且n≥0),若产品销售价保持不变,第n次投入后的年利润为万元.
(1)求k的值,并求出的表达式;
(2)问从今年算起第几年利润最高?最高利润为多少万元?
正确答案
(1)由,当n=0时,由题意,可得k=8,
所以.
(2)由
.
当且仅当,即n=8时取等号,所以第8年工厂的利润最高,最高为520万元
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析