热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 10 分

已知关于x的不等式(其中)。
(1)当时,求不等式的解集;
(2)若不等式有解,求实数的取值范围

正确答案

(1)(2)

解析

解析:(1)当a=4时,不等式即|2x+1|-|x-1|≤2,当x<−时,不等式为-x-2≤2,   解  得−4≤x<−;当−≤x≤1时,不等式为 3x≤2,解得−≤x≤ ;当x>1时,不等式为x+2≤2,此时x不存在。

综上,不等式的解集为{x|−4≤x≤}            --------5分

(2)设f(x)=|2x+1|-|x-1|=  

故f(x)的最小值为−,所以,当f(x)≤log2a有解,则有,解得a≥

即a的取值范围是。      --------10分

知识点

不等式的性质
1
题型: 单选题
|
单选题 · 5 分

如图所示的韦恩图,中,式两个非空集合,定义集合为阴影部分表示的集合,若,则

(    )

A

B

C

D

正确答案

D

解析

依题意,   ,则,由图知表示阴影部分组成的集合,所以=

知识点

不等式的性质
1
题型:简答题
|
简答题 · 12 分

如图,五面体中,,底面是正三角形,,四边形是矩形,二面角为直二面角。

(1)上运动,当在何处时,有∥平面,并且说明理由;

(2)当∥平面时,求二面角余弦值。

正确答案

见解析

解析

解析:(1)当中点时,有平面 (2分)

证明:连结,连结∵ 四边形是矩形

中点又中点,从而 (4分)

平面,平面平面(6分)

(2)建立空间直角坐标系如图所示,

,,,,(7分)

所以,,                              (8分)

为平面的法向量,则有,,即

,可得平面的一个法向量为,

而平面的一个法向量为                                 (10分)

所以,故二面角的余弦值为 (12分)

知识点

不等式的性质
1
题型:简答题
|
简答题 · 10 分

已知函数.
(1)当时,解不等式
(2)当时,恒成立,求的取值范围.

正确答案

见解析

解析

解析:(1)            ……………………2分

     ……………………5分

(2)恒成立

                                                   ……………………10分

知识点

不等式的性质
1
题型:简答题
|
简答题 · 10 分

在平面直角坐标系中,定义点之间的直角距离为,点

(1)若,求的取值范围;

(2)当时,不等式恒成立,求的最小值。

正确答案

(1)(2)

解析

解析:(1)由定义得,即,两边平方得

解得;------------------------------(4分)

(2)当时,不等式恒成立,也就是恒成立,

法一:函数  令,所以

要使原不等式恒成立只要即可,故.

法二:三角不等式性质  因为,所以.----------(10分)

知识点

不等式的性质
下一知识点 : 不等式的应用
百度题库 > 高考 > 理科数学 > 不等式的性质

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题