热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

已知为实数),在处的切线方程为

27.求的单调区间;

28.若任意实数,使得对任意的上恒有成立,求实数的取值范围.

第(1)小题正确答案及相关解析

正确答案

见解析

解析

,由条件可得:

的减区间为

没有递增区间;

考查方向

利用导数求函数的单调区间;导数的集合意义;利用导数证明不等式

解题思路

先利用导数求函数的单调区间,第2问利用分类讨论思想,讨论参数的值。

易错点

求导数错误,参数的取值范围分类错误

第(2)小题正确答案及相关解析

正确答案

见解析

解析

由⑴可知,上的最小值为

只需对任意恒成立

时,单调递减,当时,单调递增

的最大值为只需

考查方向

利用导数求函数的单调区间;导数的集合意义;利用导数证明不等式

解题思路

先利用导数求函数的单调区间,第2问利用分类讨论思想,讨论参数的值。

易错点

求导数错误,参数的取值范围分类错误

1
题型:简答题
|
简答题 · 12 分

已知函数的图像在点处的切线为

27.求函数的解析式;

28.当时,求证:

29.若对任意的恒成立,求实数的取值范围;

第(1)小题正确答案及相关解析

正确答案

见解析

解析

,由已知解得,故

考查方向

利用导数求最值和极值;利用导数研究函数的图像特征;

解题思路

先根据导数的性质求切线的斜率,进而求出参数的值,得到函数的解析式,利用导数的性质作出函数大致图像,结合图像,利用分类讨论思想求K的取值范围.

易错点

求导错误,函数性质理解错误;分类讨论有重有漏

第(2)小题正确答案及相关解析

正确答案

见解析

解析

,    由

时,单调递减;当时,单调递增

,从而

考查方向

利用导数求最值和极值;利用导数研究函数的图像特征;

解题思路

先根据导数的性质求切线的斜率,进而求出参数的值,得到函数的解析式,利用导数的性质作出函数大致图像,结合图像,利用分类讨论思想求K的取值范围.

易错点

求导错误,函数性质理解错误;分类讨论有重有漏

第(3)小题正确答案及相关解析

正确答案

见解析

解析

对任意的恒成立对任意的恒成立

,∴由28题可知当时,恒成立令,得的增区间为,减区间为,∴实数的取值范围为

考查方向

利用导数求最值和极值;利用导数研究函数的图像特征;

解题思路

先根据导数的性质求切线的斜率,进而求出参数的值,得到函数的解析式,利用导数的性质作出函数大致图像,结合图像,利用分类讨论思想求K的取值范围.

易错点

求导错误,函数性质理解错误;分类讨论有重有漏

1
题型:简答题
|
简答题 · 12 分

已知首项不为0的等差数列中,前n项和为,满足,且成等比数列.

20.求

21.记,数列的前项和.若对任意恒成立,求实数m的取值范围.

第(1)小题正确答案及相关解析

正确答案

(Ⅰ)

解析

试题分析:本题属于数列的基本问题,题目的难度是逐渐由易到难,(1)按照解题步骤进行求解,(2)要注意对进行裂项;(3)要注意利用数列的单调性.

(Ⅰ)设公差为d

由①得,代入②式得

,得,所以

所以,则

考查方向

本题主要考查了等差数列、等比数列以及数列的求和,数列的考查主要分以下几类:1.等差数列与等比数列的综合,2.数列的通项与前项和的关系,3.与函数有关的数列问题,4.与不等式有关的数列问题.

解题思路

本题考查等差数列、等比数列、裂项抵消法求和,解题步骤如下:

1)设出公差,利用等比中项求公差;

2)利用等差数列的公式得到通项和前项和;

3)利用裂项抵消法进行求解;

4)利用单调性求解。

易错点

1)不能准确裂项;

2)注意数列的单调性的应用.

第(2)小题正确答案及相关解析

正确答案

(Ⅱ).

解析

试题分析:本题属于数列的基本问题,题目的难度是逐渐由易到难,(1)按照解题步骤进行求解,(2)要注意对进行裂项;(3)要注意利用数列的单调性.

(Ⅱ)可得

所以

由于为随n的增大而增大,可得

因为恒成立,所以解得

所以实数m的取值范围是

考查方向

本题主要考查了等差数列、等比数列以及数列的求和,数列的考查主要分以下几类:1.等差数列与等比数列的综合,2.数列的通项与前项和的关系,3.与函数有关的数列问题,4.与不等式有关的数列问题.

解题思路

本题考查等差数列、等比数列、裂项抵消法求和,解题步骤如下:

1)设出公差,利用等比中项求公差;

2)利用等差数列的公式得到通项和前项和;

3)利用裂项抵消法进行求解;

4)利用单调性求解。

易错点

1)不能准确裂项;

2)注意数列的单调性的应用.

1
题型: 单选题
|
单选题 · 5 分

8.设a,b都是不等于1的正数,则“”是“”的 (    )

A充要条件

B充分不必要条件

C必要不充分条件

D既不充分也不必要条件

正确答案

B

解析

,则,从而有,故为充分条件,若不一定有,比如,,从而不成立,故选B 选项.

考查方向

本题主要考察充要条件和指数、对数的运算等知识,意在考察考生的逻辑推理能力和运算求解能力。

解题思路

直接根据充要条件的判断方法判断即可。

易错点

对于的求解出错,不注意对数的适用范围。

知识点

充要条件的判定不等式的性质
1
题型:简答题
|
简答题 · 14 分

设函数f(x)=exax-2.

27.求f(x)的单调区间;

28.若a=1,k为整数,且当x>0时,(xk)f′(x)+x+1>0恒成立,求k的最大值.

第(1)小题正确答案及相关解析

正确答案

当a≤0时,f(x)的单调递增区间为(-∞,+∞);当a>0时,f(x)的单调递减区间为(-∞,ln a),单调递增区间为(ln a,+∞)

解析

函数f(x)的定义域为(-∞,+∞),f′(x)=ex-a.……1分

当a≤0时,f′(x)>0,所以f(x)在区间(-∞,+∞)上单调递增;

……………………………………3分

当a>0时,若x∈(-∞,ln a),则f′(x)<0,若x∈(ln a,+∞),则f′(x)>0,

所以f(x)在区间(-∞,ln a)上单调递减,在区间(ln a,+∞)上单调递增.

……………………………………5分

综上可知,当a≤0时,f(x)的单调递增区间为(-∞,+∞);当a>0时,f(x)的单调递减区间为(-∞,ln a),单调递增区间为(ln a,+∞)……………………………………6分

考查方向

本题主要考查函数与导数的综合应用能力,具体涉及到用导数来描述原函数的单调性、极值、最值等情况. 对考生的逻辑推理与运算求解能力有较高要求

解题思路

先求导,根据导数的函数特点对,常数a进行合理讨论a小于等于零a大于零两种情况讨论

易错点

分类讨论不全,或者对含有参数的单调性讨论思路不清;

第(2)小题正确答案及相关解析

正确答案

k=2

解析

由于a=1,所以(x-k)f′(x)+x+1=(x-k)(ex-1)+x+1.

设g(x)=(x-k)(ex-1)+x+1,则g′(x)=ex(x-k+1).……………………………………7分

(i)若k≤1,则当x>0时,g′(x)>0,所以g(x)在区间(0,+∞)上单调递增,而g(0)=1,

故当x>0时,g(x)>1>0,即有(x-k)f′(x)+x+1>0恒成立.…………………………………9分

(ii)若k>1,则当x∈(0,k-1)时,g′(x)<0;当x∈(k-1,+∞)时,g′(x)>0.

所以g(x)在区间(0,+∞)内的最小值为g(k-1)=k-ek-1+1.………………………………11分

令h(k)=k-ek-1+1,则h′(k)=1-ek-1,因为k>1,所以h′(k)<0,故h(k)在区间(1,+∞)上单调递减.而h(2)>0,h(3)<0,所以当1<k≤2时,h(k)>0,即g(k-1)>0,从而当x>0时,g(x)>0,即(x-k)f′(x)+x+1>0恒成立;当k≥3时,h(k)<0,即g(k-1)<0,故g(x)>0在区间(0,+∞)内不恒成立.……………………………………13分

综上所述,整数k的最大值为2……………………………………14分

考查方向

本题主要考查函数与导数的综合应用能力,具体涉及到用导数来描述原函数的单调性、极值、最值等情况. 对考生的逻辑推理与运算求解能力有较高要求

解题思路

将a=1及导数代入得,g(x)=(x-k)(ex-1)+x+1,则g′(x)=ex(x-k+1).设;对中的k进行合理讨论,结合一次函数的图象,分k进行讨论,得出函数的最小值表达式,再利用最小值大于0恒成立,得到整数中的取个范围。

易错点

处理逻辑推理与运算求解能力方面易出错。思路不清晰,步骤不严谨

1
题型:填空题
|
填空题 · 4 分

13.在直角坐标系中,已知点,设表示△所围成的平面区域(含边界),若对区域内的任意一点,不等式恒成立,其中,则以为坐标的点所形成的区域面积为   ▲   

正确答案

4

解析

令a=0,则by,在y恒成立,所以b,同理a,所以(a,b)为坐标的点形成的区域是边长为2的正方形,所以面积为4.

考查方向

本题考查线性规划及不等式的恒成立问题

解题思路

可令a=0 by,在y恒成立,解出b,同理解出a,进而求面积为4.

易错点

由可行域向不等式恒成立转化

知识点

不等式的性质不等式的应用
1
题型: 单选题
|
单选题 · 5 分

9.若为偶函数,则的解集为(    )

A

B

C

D

正确答案

C

解析

若f(x)=为偶函数,则f(x)=f(-x),即,(1-a)(-)=0,a=1, f(x)=, f(x-1)< ,,(-1)(0

考查方向

函数的奇偶性,解不等式

解题思路

先由偶函数性质,求出a=1,将不等式进行化简整理,(-1)(,解出取值范围,进而求出x的取值范围

易错点

不等式的化简整理

知识点

函数奇偶性的性质不等式的性质
1
题型: 单选题
|
单选题 · 5 分

1.已知,则等于(   )

A

B1

C3

D

正确答案

C

解析

考查方向

分段函数与复数结合。

解题思路

从内到外依次求值。

易错点

计算粗心出错。

知识点

不等式的性质
1
题型:简答题
|
简答题 · 14 分

已知函数

26.若函数x=0处的切线也是函数图象的一条切线,求实数a的值;

27.若函数的图象恒在直线的下方,求实数a的取值范围;

28.若,且,判断的大小关系,并说明理由.

注:题目中e=2.71828…是自然对数的底数.

第(1)小题正确答案及相关解析

正确答案

(Ⅰ)

解析

试题分析:本题属于函数与导数的基本问题,题目的难度是逐渐由易到难,(1)按照解题步骤求解,(2)要注意转化思想的应用;

(Ⅰ)x=0处切线斜率k,切线l

,设l相切时的切点为,则斜率

则切线l的方程又可表示为

解之得a

考查方向

本题主要考查了导数的几何意义、导数在研究函数中的应用、导数在研究不等式中的应用,导数的考查主要分以下几类:1.导数的几何意义,2.利用导数研究函数的单调性,3.利用导数研究不等式恒成立或解的存在性问题..

解题思路

本题考查导数的几何意义和导数的应用,解题步骤如下:

1)求导,利用导数的几何意义求出两曲线的切线方程,利用切线相同进行求解;

2)作差,将问题转化为不等式恒成立问题;

3)构造函数,利用导数研究函数的单调性和最值;

4)利用前一步的结论合理赋值进行求解。

易错点

1)不能正确求导;

2)不能合理转化或赋值.

第(2)小题正确答案及相关解析

正确答案

(Ⅱ)

解析

试题分析:本题属于函数与导数的基本问题,题目的难度是逐渐由易到难,(1)按照解题步骤求解,(2)要注意转化思想的应用;

a

(Ⅱ)由题对于x>0恒成立,即对于x>0恒成立,

,则,由

则当x>0时,

,得,即实数a的取值范围是

考查方向

本题主要考查了导数的几何意义、导数在研究函数中的应用、导数在研究不等式中的应用,导数的考查主要分以下几类:1.导数的几何意义,2.利用导数研究函数的单调性,3.利用导数研究不等式恒成立或解的存在性问题..

解题思路

本题考查导数的几何意义和导数的应用,解题步骤如下:

1)求导,利用导数的几何意义求出两曲线的切线方程,利用切线相同进行求解;

2)作差,将问题转化为不等式恒成立问题;

3)构造函数,利用导数研究函数的单调性和最值;

4)利用前一步的结论合理赋值进行求解。

易错点

1)不能正确求导;

2)不能合理转化或赋值.

第(3)小题正确答案及相关解析

正确答案

(Ⅲ).

解析

试题分析:本题属于函数与导数的基本问题,题目的难度是逐渐由易到难,(1)按照解题步骤求解,(2)要注意转化思想的应用;

(Ⅲ).理由如下:

由题,由

xa时,单调递减,

因为,所以,即

所以,    ①

同理,    ②

①+②得

因为

,即

所以,即

所以

考查方向

本题主要考查了导数的几何意义、导数在研究函数中的应用、导数在研究不等式中的应用,导数的考查主要分以下几类:1.导数的几何意义,2.利用导数研究函数的单调性,3.利用导数研究不等式恒成立或解的存在性问题..

解题思路

本题考查导数的几何意义和导数的应用,解题步骤如下:

1)求导,利用导数的几何意义求出两曲线的切线方程,利用切线相同进行求解;

2)作差,将问题转化为不等式恒成立问题;

3)构造函数,利用导数研究函数的单调性和最值;

4)利用前一步的结论合理赋值进行求解。

易错点

1)不能正确求导;

2)不能合理转化或赋值.

1
题型: 单选题
|
单选题 · 5 分

7.已知,点满足,则的最大值为(  )

A

B

C0

D1

正确答案

D

解析

根据约束条件画出可行域

由图 可知在点A(2,2)处取得最值 即z=6-5=1    选D

考查方向

该题主要考察了简单的线性规划问题,考察了向量的坐标运算,考察了向量的数量积运算,该题属于简单题

解题思路

该题解题思路

1)题意画出可行域,标记可行域的顶点

2)根据 得出

3)通过简单的线性规划问题最优解的性质得出最值

易错点

主要体现在两个方面①可行域不规范,②目标函数转化错误

知识点

不等式的性质其它不等式的解法
下一知识点 : 不等式的应用
百度题库 > 高考 > 理科数学 > 不等式的性质

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题