- 牛顿运动定律
- 共1024题
如图,质量M=1.6kg的均匀水平板AB长为1.2m,B端靠在墙上,板中点C处固连一根长为0.6m的轻质斜杆CO,与板面夹角为53°,O点为固定转轴。在B端处有一静止小木块,先用大小为8.05N的拉力F使木块向左滑动,再撤去拉力F,木块能滑到板的最左端A,且支架恰好不会失去平衡向左翻倒,木块与板之间的动摩擦因数µ=0.5。求:(取g=10m/s2,sin53°=0.8,cos53°=0.6)
(1)木块质量m;
(2)拉力F作用于木块的最短时间。
正确答案
见解析
解析
(1)当木块滑到A端时,由于板恰处于平衡状态,
对板AB:MgLcos53°=mg(L-Lcos53°)+μmg Lsin53°
m=1.2kg
(2)为使F作用时间最短,则木块运动加速度需最大,设F与水平面的夹角为β
Fcosβ-μ(mg-Fsinβ)=ma1
=2.5m/s2
撤去外力F后,a2=μg=5m/s2
a1︰a2=1︰2,所以s1︰s2=2︰1,得s1=0.8m
=0.8s
知识点
19.如图所示,固定斜面倾角为整个斜面分为AB、BC段,且
,小物块P(可视为质点)与AB、BC两段斜面之间的动摩擦因数分别为
、
。已知P由静止开始从A点释放,恰好能滑动到C点而停下,那么
、
、
间应满足的关系是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
24.如右下图所示,质量分别为=3kg、
=1kg的物块A、B置于足够长的水平面上,在F=13N的水平推山作用下,一起由静止开始向右做匀加速运动,已知A、B与水平而间的动摩擦因素分别为
=0.1,
=0.2,g=10m/
求:
(1)物块A、B-起做匀加速运动的加速度为多大?
(2)物块A对物块B的作用力为多大?
(3)若物块A、B-起运动的速度为v=10m/s时,撤去水平力F,求此后物块滑行的位移?
正确答案
(1)设物块A、B一起做匀加速运动的加速度为a,则
代入数据解得
(2)设物块A对物块B的作用力大小为,则
代入数据得
(3)撤去水平力F后,假设物块分离,则
显然,故两物块不会分离,撤去水平力F后,物块A、B一起做减速运动,设滑行距离为S,则由动能定理
解得S=40m
解析
解析已在路上飞奔,马上就到!
知识点
16.作用于水平面上某物体的合力F与时间t的关系如图所示,设力的方向向右为正。则将物体从下列哪个时刻由静止释放,该物体会始终向左运动( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
21. 质量为40kg的雪橇在倾角=37°的斜面上向下滑动,如图(a)所示,所受的空气阻力与速度成正比,今测得雪橇运动的v-t图象如(b)所示,且AB是曲线在A点切线,B点坐标为(4,15),CD是曲线的渐近线,根据以上信息,不可以确定下列哪个物理量( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
24.如图所示,水平面上放有质量均为的物块A和B(均视为质点),A、B与地面的动摩擦因数分别为
和
,相距
现给物块A一初速度使之向B运动,与此同时给物块B一个
水平向右的力使其由静止开始运动,经过一段时间A恰好能追上B(取
)求:
(1)物块B运动的加速度大小;
(2)物块A初速度大小。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
25.如图所示,半径的
光滑圆弧轨道固定在光滑水平面上,轨道上方A点有一质量为
的小物块.小物块由静止开始下落后打在圆轨道上B点但未反弹,在瞬间碰撞过程中,小物块沿半径方向的分速度立刻减为零,而沿切线方向的分速度不变.此后,小物块将沿圆弧轨道滑下.已知A、B两点到圆心O的距离均为R,与水平方向夹角均为
,C点为圆弧轨道末端,紧靠C点有一质量
的长木板Q,木板上表面与圆弧轨道末端切线相平,小物块与木板间的动摩擦因数
,取
。求:
(1)小物块刚到达B点时的速度;
(2)小物块沿圆弧轨道到达C点时对轨道的压力的大小;
(3)木板长度L至少为多大时小物块才不会滑出长木板。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
24.随着中国女子冰壶队的走俏,该运动项目深受人们的喜爱,某小学物理兴趣实验小组在实验室模拟了冰壶比赛。将队员们分成两队,各队的队员从起点O开始用一水平恒力推动一质量为m=0.5kg的小车,让该恒力作用一段时间后撤走,最后小车停在MN区域内算作有效,如图所示,所有队员都完成比赛后,有效次数多的队获胜。已知ON的距离为x1=5m,MN的距离为x2=1m,小车与桌面间的动摩擦因数为。假设某队员的水平推力为F=20N,小车整个运动过程中始终沿直线ON运动,小车可视为质点.求:
(1)要想使该小车有效,队员对小车作用的最长时间;
(2)若要使该小车有效,队员对小车作用的最小距离。
正确答案
(1)要想使小车为有效车,则当小车运动到N点速度正好为零,力作用的时间最长,
设最长作用时间为,有力作用时小车做匀加速运动,设加速度为
,
时刻小车的速度为
,力停止作用后做匀减速运动,设此时加速度大小为
,由牛顿第二定律得:
加速运动过程中的位移
减速运动过程中的位移
位移关系满足:
又:
由以上各式解得:
(2)要想使小车为有效车,则当小车运动到M点速度正好为零,力作用的距离最小,设最小距离为,则:
联立解得:
解析
解析已在路上飞奔,马上就到!
知识点
25.如图所示,水平传送带右侧通过一光滑水平面与一光滑的曲面相接,左侧与光滑水平面相接,在左侧用一长为L=1m的细线吊一质量为m2=1kg的物块B,静止且刚好要与水平面接触,物块看成质点,传送带始终以v=2m/s的速率逆时针转动.质量为m1=1kg的小物块A从曲面上距水平台面h=0.8m处由静止释放.已知物块A与传送带之间的摩擦因数传送带的长l为1.0m。A滑过传送带后与小球B发生碰撞,并粘在一起,取
。求:
(1)物块A滑过传送带所用的时间;
(2)物块A与小球B相碰后的一瞬间绳的张力。
正确答案
(1)设物块B沿光滑曲面下滑到水平位置时的速度大小为
由机械能守恒知
物块A冲上传送带后,由于因此物块A冲上传送带后做匀减速运动加速度大小为
假设物块A滑离传送带前就与传送带有共同速度,则物块A匀减速运动的位移为
因此假设不成立,物块A一直匀减速滑过传送带
求得:
(2)物块A滑过传送带时的速度为,
;设与B发生碰撞后一瞬间的共同速度为
,
根据牛顿第二定律
解得:
解析
解析已在路上飞奔,马上就到!
知识点
24.如图所示,在倾角的足够长的固定斜面底端有一质量m=1.0kg的物体,物体与斜面间的动摩擦因数μ=0.25,现用轻细绳将物体由静止沿斜面向上拉,拉力F=10.0N、方向平行斜面向上,经时间t=4.0s绳子突然断了,求:(取
=3.2,sin37°=0.6,cos37°=0.8,g=
)
(1)绳断时物体的速度大小;
(2)从绳子断了开始到物体再返回到斜面底端的运动时间。
正确答案
(1)物体向上运动过程中,受到重力mg、摩擦力、拉力F,设加速度为
,则有:
解得:
所以
时物体的速度
(2)绳断后,物体距斜面底端断绳后,设加速度为
,由牛顿第二定律得:
解得:物体做减速运动的时间
减速运动的位移
此后物体沿斜面匀加速下滑,设加速度为
则有:
解得:
设下滑时间为,
则:
解得:
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析