- 不等式的解法
- 共209题
12.若不等式对一切正数恒成立,则正数的最小值为_________。
正确答案
2
解析
解析已在路上飞奔,马上就到!
知识点
从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n=__________.
正确答案
8
解析
从1,2,…,n中任取两个不同的数共有种取法,两数之和为5的有(1,4),(2,3)2种,所以,即,解得n=8
知识点
不等式的解集为
正确答案
解析
略
知识点
不等式的解集为 .
正确答案
解析
略
知识点
如图,已知椭圆与的中心在坐标原点,长轴均为且在轴上,短轴长分别
为,,过原点且不与轴重合的直线与,的四个交点按纵坐标从
大到小依次为A,B,C,D,记,△和△的面积分别为和.
(1)当直线与轴重合时,若,求的值;
(2)当变化时,是否存在与坐标轴不重合的直线l,使得?并说明理由。
正确答案
(1);(2)当1<λ≤时,不存在与坐标轴不重合的直线l,使得S1=λS2;当λ>时,存在与坐标轴不重合的直线l使得S1=λS2.
解析
依题意可设椭圆C1和C2的方程分别为
C1:,C2:.
其中a>m>n>0,λ=.
(1)解法1:
如图1,若直线l与y轴重合,即直线l的方程为x=0,则S1=|BD|·|OM|=a|BD|,S2=|AB|·|ON|=a|AB|,
所以.
在C1和C2的方程中分别令x=0,可得yA=m,yB=n,yD=-m,
于是.
若,则,化简得λ2-2λ-1=0.
由λ>1,可解得λ=.
故当直线l与y轴重合时,若S1=λS2,则λ=.
解法2:如图1,若直线l与y轴重合,则
|BD|=|OB|+|OD|=m+n,|AB|=|OA|-|OB|=m-n;
S1=|BD|·|OM|=a|BD|,
S2=|AB|·|ON|=a|AB|。
所以.
若,则,化简得λ2-2λ-1=0.
由λ>1,可解得λ=.
故当直线l与y轴重合时,若S1=λS2,则λ=.
(2)解法1:
如图2,若存在与坐标轴不重合的直线l,使得S1=λS2.根据对称性,不妨设直线l:y=kx(k>0),点M(-a,0),N(a,0)到直线l的距离分别为d1,d2,则,,所以d1=d2.
又S1=|BD|d1,S2=|AB|d2,所以,即|BD|=λ|AB|。
由对称性可知|AB|=|CD|,所以|BC|=|BD|-|AB|=(λ-1)|AB|,
|AD|=|BD|+|AB|=(λ+1)|AB|,于是
.①
将l的方程分别与C1,C2的方程联立,可求得
,.
根据对称性可知xC=-xB,xD=-xA,于是
=.②
从而由①和②式可得
.③
令,则由m>n,可得t≠1,于是由③可解得.
因为k≠0,所以k2>0.于是③式关于k有解,当且仅当,
等价于由λ>1,可解得<t<1,
即,由λ>1,解得λ>,所以
当1<λ≤时,不存在与坐标轴不重合的直线l,使得S1=λS2;
当λ>时,存在与坐标轴不重合的直线l使得S1=λS2.
解法2:如图2,若存在与坐标轴不重合的直线l,使得S1=λS2.根据对称性,不妨设直线l:y=kx(k>0),
点M(-a,0),N(a,0)到直线l的距离分别为d1,d2,
则,,所以d1=d2.
又S1=|BD|d1,S2=|AB|d2,所以.
因为,所以.
由点A(xA,kxA),B(xB,kxB)分别在C1,C2上,可得,,两式相减可得,
依题意xA>xB>0,所以.所以由上式解得.
因为k2>0,所以由,可解得.
从而,解得λ>,所以
当1<λ≤时,不存在与坐标轴不重合的直线l,使得S1=λS2;
当λ>时,存在与坐标轴不重合的直线l使得S1=λS2.
知识点
若实数满足不等式组且的最大值为9,则实数
正确答案
解析
本题考查了线性规划
作出可行域,因为有最大值,故m>0,联立方程组,得交点为(,),(,),(,),由+=9得m=1
知识点
若不等式的解集为,则实数的值为 。
正确答案
2
解析
略
知识点
如图,是圆的直径,点是圆上异于的点,直线平面,,分别是,的中点.
(1)记平面与平面的交线为,试判断直线与平面的位置关系,并加以证明;
(2)设(1)中的直线l与圆的另一个交点为,且点Q满足. 记直线与平面所成的角为,异面直线与所成的角为,二面角的大小为,求证:.
正确答案
见解析
解析
(1)直线l∥平面PAC,证明如下:
连接EF,因为E,F分别是PA,PC的中点,
所以EF∥AC.
又EF平面ABC,且AC平面ABC,
所以EF∥平面ABC.
而EF平面BEF,且平面BEF∩平面ABC=l,所以EF∥l.
因为l平面PAC,EF平面PAC,
所以直线l∥平面PAC.
(2)
证明:(综合法)如图1,连接BD,由(1)可知交线l即为直线BD,且l∥AC.
因为AB是O的直径,
所以AC⊥BC,
于是l⊥BC.
已知PC⊥平面ABC,而l平面ABC,所以PC⊥l.
而PC∩BC=C,所以l⊥平面PBC.
连接BE,BF,因为BF平面PBC,
所以l⊥BF.
故∠CBF就是二面角E-l-C的平面角,
即∠CBF=β.
由,作DQ∥CP,且.
连接PQ,DF,因为F是CP的中点,CP=2PF,
所以DQ=PF,
从而四边形DQPF是平行四边形,PQ∥FD.
连接CD,因为PC⊥平面ABC,所以CD是FD在平面ABC内的射影,
故∠CDF就是直线PQ与平面ABC所成的角,即∠CDF=θ.
又BD⊥平面PBC,有BD⊥BF,知∠BDF为锐角,
故∠BDF为异面直线PQ与EF所成的角,即∠BDF=α,
于是在Rt△DCF,Rt△FBD,Rt△BCF中,分别可得
sin θ=,sin α=,sin β=,
从而sin αsin β==sin θ,
即sin θ=sin αsin β.
(向量法)如图2,由,作DQ∥CP,且.
图2
连接PQ,EF,BE,BF,BD,由(1)可知交线l即为直线BD.
以点C为原点,向量,,所在直线分别为x、y、z轴,建立如图所示的空间直角坐标系,设CA=a,CB=b,CP=2c,则有C(0,0,0),A(a,0,0),B(0,b,0),P(0,0,2c),Q(a,b,c),E,F(0,0,c)。
于是,=(-a,-b,c),=(0,-b,c),
所以cos α=,从而.
又取平面ABC的一个法向量为m=(0,0,1),可得,
设平面BEF的一个法向量为n=(x,y,z),
所以由可得取n=(0,c,b)。
于是|cos β|=,
从而sin β=.
故sin αsin β==sin θ,即sin θ=sin αsin β
知识点
若,,,,则
正确答案
解析
∵,,∴,又∵,,∴,∴===.
知识点
关于x的不等式ax2-2x+1<0的解集非空的一个必要不充分条件是( )
正确答案
解析
因为ax2-2x+1<0的解集非空,显然a≤0成立,由解得0<a<1.综上知ax2-2x+1<0的解集非空的充要条件为a<1,因为{a|a<1}⊂{a|a≤1},故选B.
知识点
扫码查看完整答案与解析