- 函数的概念及其构成要素
- 共1288题
定义:对于函数,若存在非零常数
,使函数
对于定义域内的任意实数
,都有
,则称函数
是广义周期函数,其中称
为函数
的广义周期,
称为周距。
(1)证明函数是以2为广义周期的广义周期函数,并求出它的相应周距
的值;
(2)试判断函数(
为常数,
)是否为广义周期函数,若是,请求出它的一个广义周期
和周距
,若不是,请说明理由;
(3)设函数是周期
的周期函数,当函数
在
上的值域为
时,求
在
上的最大值和最小值。
正确答案
见解析
解析
(1),
(非零常数)
所以函数是广义周期函数,它的周距为2;-----(4分)
(2)函数(
为常数,
)
是广义周期函数, 且.证明如下:
(非零常数)。 -------------------------------------------------------------------------------------( 8分)
(3),
所以是广义周期函数,且
. ------------------------------------------(10分)
设满足
,
由得:
,
又知道
在区间
上的最小值是
在
上获得的,而
,所以
在
上的最小值为
。--------------------( 13分)
由得
得:
,
又知道
在区间
上的最大值是
在
上获得的,而
,所以
在
上的最大值为23
知识点
已知函数
(1) 若时,
恒成立,求
的取值范围;
(2) 若时,函数
在实数集
上有最小值,求实数
的取值范围。
正确答案
见解析。
解析
(1) 因为时,
,所以令
,则有
,
当
时恒成立,转化为
,
即在
上恒成立,
令p (t)=t-,,则
,所以p (t)=t-在
上单调递增,
所以,所以
,解得
。
(2) 当时,
,即
,
当时,即
时,
;
当时,即
,
;
当时,
,令
,
,则
当,即
时,
;
当,即
时,
在开区间
上单调递减,
,
无最小值;
综合与
,所以当
时,即
,函数
;
当时,
,函数
无最小值;
当时,
,函数
无最小值。
综上所述,当时,函数
有最小值为
;当
时,函数
无最小值
知识点
函数的值域为____________。
正确答案
解析
略
知识点
已知函数若
,则
。
正确答案
解析
因为,所以
;
则;
知识点
将函数的图像上各点向右平移
个单位,则得到新函数的解析式为
正确答案
解析
的图像向右平移
个单位后变为
;
知识点
扫码查看完整答案与解析