热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 14 分

已知(其中)是实系数一元二次方程的两个根.

(1)求的值;

(2)计算:.

正确答案

见解析

解析

(1).(每一个值2分)………8分

(2).……………………14分

知识点

函数的概念及其构成要素
1
题型:简答题
|
简答题 · 18 分

已知函数.

(1)画出函数在闭区间上的大致图像;

(2)解关于的不等式

(3)当时,证明:恒成立。

正确答案

见解析

解析

(1)坐标系正确1分;

大致图像3分.评分关键点:与轴的两个交点 ,两个最高点,与轴的交点,对称性.

(2)原不等式等价转化为下列不等式组:

或者解得不等式的解为.………………4分

(或者由,解得

所以原不等式的解为:

.………6分

(3)证法1:原不等式等价转化为下列不等式组:

(Ⅰ)或者(Ⅱ)  2分

(Ⅰ)不等式2中,判别式,因为,所以,即;所以当时,恒成立. ………………………………………5分

(Ⅱ)在不等式4中,判别式,因为,所以

所以,.

(或者

所以当时,恒成立.

综上讨论,得到:当时,恒成立. ………………………8分

证法2:设),(

)()……12分

以下讨论关于的最值函数的最值与0关系(略)。………………………18分

知识点

函数的概念及其构成要素
1
题型:简答题
|
简答题 · 14 分

已知函数处取得极值2,

(1)求函数的解析式 。

(2)当满足什么条件时,在区间为增函数。

(3)若为函数图象上的任意一点,直线L与的图象切于点,求直线L的斜率的取值范围。

正确答案

见解析。

解析

(1)  由已知

                   

(2) ,得-1<x<1

f(x)在(-1,1)是增函数

又f(x)在 (m,2m+1)上为增函数

(3)直线l在P点的切线斜率

,

知识点

函数的概念及其构成要素
1
题型:简答题
|
简答题 · 18 分

二次函数,对任意实数恒成立;数列满足.

(1)求函数的解析式和值域;

(2)试写出一个区间,使得当时,数列在这个区间上是递增数列,并说明理由;

(3)已知,求:.

正确答案

见解析

解析

(1)由恒成立等价于恒成立,……………1分

从而得:,化简得,从而得,所以,………3分

其值域为.……………………4分

(2)当时,数列在这个区间上是递增数列,证明如下

,则,所以对一切,均有;…………………7分

从而得,即,所以数列在区间上是递增数列.………………10分

:本题的区间也可以是无穷多个.

另解:若数列在某个区间上是递增数列,则

…………………………7分

又当时,,所以对一切,均有,所以数列在区间上是递增数列.………………10分

(3)由(2)知,从而

,即;  ………12分

,则有

从而有,可得,所以数列是以为首项,公比为的等比数列,……………14分

从而得,即,所以

所以,所以,  ………………16分

所以,

.  …………………18分

知识点

函数的概念及其构成要素
1
题型:简答题
|
简答题 · 14 分

已知向量.

(1)求函数的最小正周期及单调递减区间;

(2)记△的内角的对边分别为.若,求的值。

正确答案

见解析

解析

(1)

……………………3分

所以,……………………4分

递减区间是;……………………6分

(2)由………………10分

时,,即负舍;……………………12分

时,,即负舍。;  …………………14分

知识点

函数的概念及其构成要素
下一知识点 : 判断两个函数是否为同一函数
百度题库 > 高考 > 文科数学 > 函数的概念及其构成要素

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题