- 圆的切线的判定定理的证明
- 共10题
28.如图,在Rt△ABC中,AB=BC.以AB为直径的⊙O交AC于点D,过D作DEBC,垂足为E,连接AE交⊙O于点F.求证:BECE=EFEA.
正确答案
见解析
解析
证明:连接BD.因为AB为直径,所以BD⊥AC.
因为AB=BC,所以AD=DC.
因为DEBC,ABBC,所以DE∥AB,
所以CE=EB.
因为AB是直径,ABBC,所以BC是圆O的切线,
所以BE2=EFEA,即BECE=EFEA.
考查方向
解题思路
本题考查三角函数与解三角形,解题步骤如下:
连接BD,由已知得∠BDA=90°,∠BDC=90°,DE2=BE•CE,由此利用切割线定理能证明BE•CE=EF
•BA.
易错点
切割线定理不会应用
知识点
选修4—1:几何证明选讲
如图6,圆O的直径

圆O于点C,D,过点P作AP的垂线,交直线AC于点E,交直线AD于点F.
28. 当

29.求
正确答案
(1)
解析
解:(Ⅰ) 连结BC,∵AB是圆O的直径 ∴则
又

∵
考查方向
解题思路
找不到

易错点
不会使用第(1)问的结论推导第(2)问;
正确答案
(2)24;
解析
(Ⅱ)由(Ⅰ)知
∴D、C、E、F四点共圆,
∴
∵PC、PA都是圆O的割线,∴
∴
考查方向
解题思路
无法发现D、C、E、F四点共圆导致不能使用割线定理。
易错点
不会使用第(1)问的结论推导第(2)问;
选修4-1: 几何证明选讲.
如图所示,已知










27.求证:
28.若

正确答案
见解析
解析
∵














考查方向
解题思路
先证明

易错点
找不准三角形相似或全等的条件
正确答案
PA=
解析
∵



由27题可知:







考查方向
解题思路
先综合题中条件及27中结论,解出EP=

易错点
找不准三角形相似或全等的条件
如图,A、B是圆O上的两点,且AB的长度小于圆O的直径,
直线
27. 求证:

28.求圆
正确答案
(1)略;
解析
(I)如图22-1,由切割线定理得







考查方向
解题思路
先根据切割线定理求出

易错点
不会根据切割线定理求解;
正确答案
(2)4
解析
(2):如图22-2连结



设













考查方向
解题思路
先证明
易错点
不会做辅助线导致无法求出正确答案。
22. 【选修4-1:几何证明选讲】
如图,已知线段AC为⊙O 的直径,P为⊙O的切线,切点为A,B为⊙O上一点,且BC∥PO.
( I )求证:PB为⊙O的切线;
(Ⅱ)若⊙O的半径为1,PA =3,求BC的长。
正确答案
(1)证明略;(2)
解析
试题分析:本题属于平面几何问题,题目难度较低,解题时要注意深入分析已知条件和特征结论,善于将各已知条件联系起来考虑,寻找合理的解题思路。
(1)连接

又


(2)连接



解得
考查方向
解题思路
本题考查三角形与圆的相关知识,解题步骤如下:
1、通过相应的条件和定理建立起有关角或边之间的关系式,如全等关系。
2、灵活三角形相似得到所需结论。
易错点
1、未想到连接OB、AB而无法下手;
2、第二问中由相似得到合适结论出错。
知识点
22. 如图,在直角








(Ⅰ)证明:
(Ⅱ)若



正确答案
(Ⅰ)略
(Ⅱ)
解析
试题分析:本题是有关直线与圆的问题,难度不大。在解题中注意结合切线的性质和勾股定理等知识进行解决。
(Ⅰ)
连结

因为

因为

所以
所以
(Ⅱ)由已知



所以
因为


因为

所以
考查方向
解题思路
本题主要考查圆的基本性质、圆周角定理等基础知识。解题步骤如下:
(Ⅰ)利用四点共圆的判定定理,证明
(Ⅱ)利用切线性质和勾股定理及第一问的结论,求出
易错点
第二问计算中,不易想到利用第一问
知识点
如图, 











正确答案
解析
略
知识点
AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC。
正确答案
解析
(方法一)证明:连结OD,则:OD⊥DC,
又OA=OD,DA=DC,所以∠DAO=∠ODA=∠DCO,
∠DOC=∠DAO+∠ODA=2∠DCO,
所以∠DCO=300,∠DOC=600,
所以OC=2OD,即OB=BC=OD=OA,所以AB=2BC。
(方法二)证明:连结OD、BD。
因为AB是圆O的直径,所以∠ADB=900,AB=2 OB。
因为DC 是圆O的切线,所以∠CDO=900。
又因为DA=DC,所以∠DAC=∠DCA,
于是△ADB≌△CDO,从而AB=CO。
即2OB=OB+BC,得OB=BC。
故AB=2BC。
知识点
22.选修4-1:几何证明选讲
如图,












(Ⅰ)求证:

(Ⅱ)若

正确答案
见解析.
解析
试题分析:本题属于平面几何中的基本问题,题目的难度是容易题。
(Ⅰ)连接

又




(Ⅱ)过




设

由


可得
考查方向
本题考查了平面几何的知识,主要涉及直线与圆的位置关系,三角形相似的考查.
解题思路
本题考查平面几何的知识,解题步骤如下:利用圆的相关定理证明;利用切割线定理和相交弦定理证明。
易错点
相关的定理容易混用。
知识点
22.选修4—1:几何证明选讲。
如图







(Ⅰ)求证:
(Ⅱ)若







正确答案
解,(Ⅰ) 在



所以
因为

由切割线定理得
所以
(Ⅱ)因为

因为线段

弦中点到圆心的距离最短,此时




因此
解析
(Ⅰ) 在



所以
因为

由切割线定理得
所以
(Ⅱ)因为

因为线段

弦中点到圆心的距离最短,此时




因此



曲线


曲线


曲线


由



(Ⅱ)当



圆心到直线

所以

考查方向
解题思路
易错点
第一问未能准确读图,找到线段关系;第二问不能充分利用OF⊥NF得到
知识点
扫码查看完整答案与解析












































