热门试卷

X 查看更多试卷
1 简答题 · 14 分

设数列的前项和为,满足,,且成等差数列。

(1)求的值;

(2) 求数列的通项公式;

(3) 证明:对一切正整数,有.

1 简答题 · 16 分

设各项均为正数的数列的前n项和为,已知,数列是公差为的等差数列。

(1)求数列的通项公式(用表示);

(2)设为实数,对满足的任意正整数,不等式都成立。求证:的最大值为

1 简答题 · 13 分

设函数fn(x)=(x∈R,n∈N*),证明:

(1)对每个n∈N*,存在唯一的xn,满足fn(xn)=0;

(2)对任意p∈N*,由(1)中xn构成的数列{xn}满足0<xn-xn+p<.

1 简答题 · 14 分

已知数列满足.若为等比数列,且

(1) 求 ;

(2) 设.记数列的前项和为,

(i)求

(ii)求正整数,使得对任意均有.

1 简答题 · 18 分

数列中,若为常数),则称数列。

(1)若数列数列,,写出所有满足条件的数列的前项;

(2)证明:一个等比数列为数列的充要条件是公比为

(3)若数列满足,设数列的前项和为,是否存在正整数,使不等式对一切都成立?若存在,求出的值;若不存在,说明理由

1 简答题 · 14 分

设等比数列的前项和为,已知()

(1)求数列的通项公式;

(2)在之间插入个数,使这个数组成一个公差为的等差数列。

求证:()。

1 简答题 · 14 分

已知数列的前项和为,且满足

(1)求的值;

(2)求

(3)设,数列的前项和为,求证:

1 简答题 · 14 分

已知正项数列中,其前项和为,且.

(1)求数列的通项公式;

(2)设是数列的前项和,是数列的前项和,求证:.

1 简答题 · 12 分

设数满足:

(1)求证:数列是等比数列;

(2)若,且对任意的正整数n,都有,求实数t的取值范围。

1 填空题 · 5 分

请阅读下列材料:若两个正实数a1,a2满足,那么.

证明:构造函数,因为对一切实数x,恒有,所以 ,从而得,所以.

根据上述证明方法,若n个正实数满足时,你能得到的结论为           .(不必证明)

下一知识点 : 数列与向量的综合
百度题库 > 高考 > 理科数学 > 数列与不等式的综合
  • 上一题
  • 1/10
  • 下一题