热门试卷

X 查看更多试卷
1
题型: 单选题
|
单选题 · 5 分

某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是

(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30)

A2018年

B2019年

C2020年

D2021年

正确答案

B

知识点

等比数列的基本运算数列与不等式的综合
1
题型: 单选题
|
单选题 · 5 分

12.已知函数满足,若函数图像的交点为 则

A0

Bm

C2m

D4m

正确答案

B

知识点

抽象函数及其应用函数图象的应用数列与不等式的综合
1
题型:填空题
|
填空题 · 15 分

设数列满足

(Ⅰ)求证:

(Ⅱ)若,证明:.

正确答案

(I)由,故

所以

因此

(II)任取,由(I)知,对于任意

从而对于任意,均有

的任意性得.             ①

否则,存在,有,取正整数,则

与①式矛盾.

综上,对于任意,均有

知识点

数列与不等式的综合数列与其它知识的综合问题
1
题型:简答题
|
简答题 · 13 分

已知,函数的从小到大的第)个极值点。

27.证明:数列{}是等比数列:

28.若对一切||恒成立,求的取值范围。

第(1)小题正确答案及相关解析

正确答案

,由,得,即

而对于,当时,

,即,则

,即,则

因此,在区间上,的符号总相反,于是当时,取得极值,所以,此时,

,易知,而

是常数,

故数列是首项为,公比为的等比数列。

解析

见答案

考查方向

本题主要考察三角函数的性质、导数的运用和恒成立问题,意在考察考生综合解决问题的能力。

解题思路

由题,令,求出函数的极值点,根据等比数列定义即可得到结果;

易错点

字母太多,导致感觉混乱没有思路;

第(2)小题正确答案及相关解析

正确答案

解析

对一切恒成立,即恒成立,也即恒成立,

,则,令

时,所以在区间上单调递减;

时,所以在区间上单调递增;

因为,且当时,,所以

因此恒成立,当且仅当,解得,

故实数a的取值范围是

考查方向

本题主要考察三角函数的性质、导数的运用和恒成立问题,意在考察考生综合解决问题的能力。

解题思路

由题问题等价于恒成立问题,设,然后运用导数的知识得到,求得,得到a的取值范围。

易错点

不会构造函数导致没有思路。

1
题型:简答题
|
简答题 · 12 分

17.在等比数列中,.(Ⅰ)求数列的通项公式;(Ⅱ)设,且为递增数列,若,求证:

正确答案

(1)时,时,

(2)由题意知:

解析

(1)具体的分析如下:时,时, 

(2)由题意知: 

  

考查方向

等比数列的通项公式,裂项相消法求和.

解题思路

先求出bn,然后用裂项相消求和

易错点

分类讨论p=1和p不等1时候的情况

知识点

由数列的前几项求通项等比数列的基本运算数列与不等式的综合
1
题型:简答题
|
简答题 · 12 分

17.设为数列的前项和,已知,对任意,都有

(Ⅰ)求数列的通项公式;

(Ⅱ)若数列的前项和为,求证:

正确答案

证明,(Ⅰ)因为

时,

两式相减,得

所以当时,

所以

因为,所以

(Ⅱ)因为

所以

所以

因为,所以

因为上是单调递减函数,

所以上是单调递增函数.

所以当时,取最小值

所以

解析

本题属于数列应用中的基本问题,两问难度相当,(I)直接按照步骤来求(II)要裂项相消求和即可.

考查方向

本题考查了数列的相关知识点:

1、利用递推公式推导通项公式;

2、数列中的关系;

3、利用递推公式求解通项公式要单独把n=1拿出来验证;

4、数列中常用的求和方法----裂项法。

解题思路

易错点

知识点

由an与Sn的关系求通项an数列与不等式的综合
1
题型:简答题
|
简答题 · 13 分

15.已知数列是等比数列,并且是公差为的等差数列.

(Ⅰ)求数列的通项公式;

(Ⅱ)设,记为数列的前n项和,证明:.

正确答案

(Ⅰ)

解析

解:设等比数列的公比为

因为是公差为的等差数列,

所以

解得.

所以

(Ⅱ)证明:因为

所以数列是以为首项,为公比的等比数列.

所以

.

考查方向

本题第一问以等差数列概念及等差中项公式为载体考查等比数列通项公式的求法,第二问以第一问知识背景为基础构造新等比数列考查求和公式的使用。本题依托高考命题核心要点命制,构思精巧,注重考查学生的方程思想及思维的灵活性。

解题思路

本题主要考查考等差、等比数列的概念和性质及方程思想,解题思路如下:1、由条件是公差为的等差数列列出方程组2、由数列是等比数列把方程组中的由通项公式化成从而得到关于的方程组进而求出的值得出的通项公式;3、表示出,进而由等比数列定义证明数列为等比数列并指出其首项和公比后进而求出数列的前n项和,化简后可得

易错点

本题第二问直接把数列当作等比数列解题而不加证明可导致失分。

知识点

由数列的前几项求通项等比数列的性质及应用数列与不等式的综合
1
题型:简答题
|
简答题 · 16 分

(16分)(2015•上海)已知数列{an}与{bn}满足an+1﹣an=2(bn+1﹣bn),n∈N*

(1)若bn=3n+5,且a1=1,求数列{an}的通项公式;

(2)设{an}的第n0项是最大项,即a≥an(n∈N*),求证:数列{bn}的第n0项是最大项;

(3)设a1=λ<0,bnn(n∈N*),求λ的取值范围,使得{an}有最大值M与最小值m,且∈(﹣2,2).

正确答案

1)解:∵an+1﹣an=2(bn+1﹣bn),bn=3n+5,

∴an+1﹣an=2(bn+1﹣bn)=2(3n+8﹣3n﹣5)=6,

∴{an}是等差数列,首项为a1=1,公差为6,

则an=1+(n﹣1)×6=6n﹣5;

(2)∵an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1

=2(bn﹣bn﹣1)+2(bn﹣1﹣bn﹣2)+…+2(b2﹣b1)+a1

=2bn+a1﹣2b1

∴数列{bn}的第n0项是最大项;

(3)由(2)可得

①当﹣1<λ<0时,单调递减,有最大值

单调递增,有最小值m=a1=λ,

∈(﹣2,2),

∴λ∈

②当λ=﹣1时,a2n=3,a2n﹣1=﹣1,

∴M=3,m=﹣1,

(﹣2,2),不满足条件.

③当λ<﹣1时,当n→+∞时,a2n→+∞,无最大值;

当n→+∞时,a2n﹣1→﹣∞,无最小值.

综上所述,λ∈(﹣,0)时满足条件.

知识点

由数列的前几项求通项数列与不等式的综合
1
题型:简答题
|
简答题 · 18 分

已知函数为常数,),且数列是首项为4,公差为2的等差数列. 

(1)求证:数列是等比数列;

(2) 若,当时,求数列的前项和的最小值;

(3)若,问是否存在实数,使得是递增数列?若存在,求出的范围;若不存在,说明理由.

正确答案

(1) 证:由题意

  ∴

 ∴

 ∵常数,∴为非零常数,

∴数列是以为首项,为公比的等比数列. 

(2) 当时, , 

所以

因为,所以,是递增数列,

因而最小值为

(3) 由(1)知,,要使对一切成立,

对一切成立. 

时,对一切恒成立;

时,对一切恒成立,只需

单调递增,

∴当时,.  

,且, 

综上所述,存在实数满足条件.

解析

本题属于数列与不等式的综合应用题,题目的难度是偏难,本题的关键是:

(1)、利函数的性质求出数列的通项公式;

(2)、利用等比数列的求和公式求出前n项和的表达式,并求出最小值;

(3)、根据数学归纳法,分类讨论出k的取值范围。

考查方向

本题考查了数列的综合应用题,特别是数列与不等式之间的应用题

易错点

1、由,得出.不容易想到2、对的讨论求出最小值讨论需要仔细3、数学归纳法的应用需要注意细节

知识点

等比数列的判断与证明数列与函数的综合数列与不等式的综合
1
题型:简答题
|
简答题 · 12 分

18.设数列{an}的前n项和为Sn,己知a1=l,nan+1=(n+2)Sn,n∈N*.

(1)求证:是等比数列;

(2)设Tn= S1+S2+--+Sn,求证:(n+l) Tn<nSn+1

正确答案

(1)

(2)略.

解析

试题分析:本题属于数列中的基本问题,题目的难度是逐渐由易到难.

(1)由已知得

所以是以1为首项,2为公比的等比数列。

(2)由上知

        ……①

   ……②

①-②得:

即(n+l) Tn<nSn+1

考查方向

本题考查了数列的问题.属于高考中的高频考点。

解题思路

本题考查数列问题,解题步骤如下:

(1)利用等比数列的定义证明。

(2)利用错位相减法求和。

易错点

错位相减法求和时相减的结果项数易错。

知识点

等比数列的判断与证明数列与不等式的综合
下一知识点 : 数列与向量的综合
百度题库 > 高考 > 理科数学 > 数列与不等式的综合

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题