- 数列与不等式的综合
- 共132题
19.已知数列的前
项的和为
,且
,
.
(1)证明数列是等比数列
(2)求通项与前
项的和
;
(3)设,若集合
恰有
个元素,求实数
的取值范围.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
17.已知公差不为0的等差数列的首项
为
,且
,
,
成等比数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)对,试比较
与
的大小.
正确答案
解:(Ⅰ)设等差数列的公差为
,由题意可知
即,从而
因为
故通项公式
(Ⅱ)记
所以
从而,当时,
;当
解析
解析已在路上飞奔,马上就到!
知识点
20.已知A(,
),B(
,
)是函数
的图象上的任意两点(可以重合),点M在直线
上,且
.
(1)求+
的值及
+
的值
(2)已知,当
时,
+
+
+
,求
;
(3)在(2)的条件下,设=
,
为数列{
}的前
项和,若存在正整数
、
,使得不等式
成立,求
和
的值.
正确答案
解:
(1)∵点M在直线x=上,设M
.
又=
,即
,
,
∴+
=1.
① 当=
时,
=
,
+
=
;
② 当时,
,
+
=
+
=
=
=
综合①②得,+
.
(Ⅱ)由(Ⅰ)知,当+
=1时,
+
∴,k=
.
n≥2时,+
+
+
, ①
, ②
①+②得,2=-2(n-1),则
=1-n.
当n=1时,=0满足
=1-n. ∴
=1-n.
(Ⅲ)=
=
,
=1+
+
=
.
.
=2-
,
=
-2+
=2-
,
∴,
、m为正整数,∴c=1,
当c=1时,,
∴1<<3,
∴m=1.
解析
解析已在路上飞奔,马上就到!
知识点
23.设数列的通项公式为
,
。 数列
定义如下:对于正整数m,
是使得不等式
成立的所有n中的最小值
(1)若,求
;
(2)若,求数列
的前2m项和公式;
(3)是否存在和
,使得
(
)?如果存在,求
和
的取值范围;如果不存在,请说明理由
正确答案
(1)由题意,得,
解,
得
∴成立的所有n中的最小整数为7,
即
(2)由题意,得,对于正整数,
由,得
.
根据的定义可知,当
时,
;
当时,
.
∴
.
(3)假设存在p和q满足条件,由不等式及
得
∵,根据
的定义可知,对于任意的正整数m 都有
,
即对任意的正整数m都成立.
当(或
)时,得
(或
),
这与上述结论矛盾!
当,即
时,得
,解得
.
∴ 存在p和q,使得;
p和q的取值范围分别是,
解析
解析已在路上飞奔,马上就到!
知识点
19.已知数列的前
项和为
,且
。
(1)求数列的通项公式;
(2)数列中,令
,
,求
;
(3)设各项均不为零的数列中,所有满足
的正整数
的个数称为这个数列
的变号数。令
(
为正整数),求数列
的变号数.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析