- 直线、圆及圆锥曲线的交汇问题
- 共263题
如图,设椭圆C:动直线与椭圆C只有一个公共点P,且点P在第一象限.
(1) 已知直线的斜率为,用表示点P的坐标;
(2) 若过原点的直线与垂直,证明:点到直线的距离的最大值为.
正确答案
见解析
解析
(1)方法1:设直线l的方程为 ,由 ,消去y得
由于直线l与椭圆C只有一个公共点P,故△=0,即,解得点P的坐标为
又点P在第一象限,故点P的坐标为
方法2:作变换 ,则椭圆C:变为圆 :
切点 变为点 ,切线( 变为 。
在圆 中设直线 的方程为( ) ,
由 解得
即 ,由于 ,
所以 ,得 ,
即 代入得 即,
利用逆变换代入即得:
(2)由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离
整理得:
因为,所以
当且仅当 时等号成立。
所以,点P到直线 的距离的最大值为
知识点
如图,点是椭圆的一个顶点,的长轴是圆的直径.是过点且互相垂直的两条直线,其中交圆于两点,交椭圆于另一点
(1)求椭圆的方程;
(2)求面积取最大值时直线的方程.
正确答案
(1)(2)
解析
(1)由已知得到,且,所以椭圆的方程是;
(2)因为直线,且都过点,所以设直线,直线,所以圆心到直线的距离为,所以直线被圆所截的弦;
由,所以
,所以
,
当时等号成立,此时直线
知识点
如图,点是椭圆的一个顶点,的长轴是圆的直径.是过点且互相垂直的两条直线,其中交圆于两点,交椭圆于另一点
(1)求椭圆的方程;
(2)求面积取最大值时直线的方程.
正确答案
见解析。
解析
(1)由已知得到,且,所以椭圆的方程是;
(2)因为直线,且都过点,所以设直线,直线,所以圆心到直线的距离为,所以直线被圆所截的弦;
由,所以
,所以
,
当时等号成立,此时直线
知识点
已知圆,圆,动圆与外切并且与圆内切,圆心的轨迹为曲线 C.
(1)求C的方程;
(2)是与圆,圆都相切的一条直线,与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.
正确答案
见解析
解析
由已知得圆的圆心为(-1,0),半径=1,圆的圆心为(1,0),半径=3.
设动圆的圆心为(,),半径为R.
(1)∵圆与圆外切且与圆内切,∴|PM|+|PN|===4,
由椭圆的定义可知,曲线C是以M,N为左右焦点,场半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为.
(2)对于曲线C上任意一点(,),由于|PM|-|PN|=≤2,∴R≤2,
当且仅当圆P的圆心为(2,0)时,R=2.
∴当圆P的半径最长时,其方程为,
当的倾斜角为时,则与轴重合,可得|AB|=.
当的倾斜角不为时,由≠R知不平行轴,设与轴的交点为Q,则=,可求得Q(-4,0),∴设,由于圆M相切得,解得.
当=时,将代入并整理得,解得=,∴|AB|==.
当=-时,由图形的对称性可知|AB|=,
综上,|AB|=或|AB|=.
知识点
如图,F1,F2分别是双曲线C:(a,b>0)的左右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交于点M,若|MF2|=|F1F2|,则C的离心率是
正确答案
解析
如图:|OB|=b,|O F1|=c,∴kPQ=,kMN=﹣。
直线PQ为:y=(x+c),两条渐近线为:y=x,由,得:Q(,);由,得:P(,),∴直线MN为:y-=﹣(x-),
令y=0得:xM=,又∵|MF2|=|F1F2|=2c,∴3c=xM=,解之得:,即e=。
知识点
如果函数y的图像与曲线恰好有两个不同的公共点,则实数的 取值范围是 ( )
正确答案
解析
数形结合,分类讨论。
①当时,曲线表示两条平行直线,与曲线y有两个公共点;
②当时,曲线表示圆,与曲线y有三个公共点
③当时,曲线表示焦点在轴上的椭圆,与曲线y有两个公共点;
④当时,曲线表示焦点在轴上的椭圆,与曲线y有四个公共点;
⑤当时,曲线表示焦点在轴上的双曲线,考虑双曲线的渐近线,当时与曲线y有两个个公共点;所以答案选A
知识点
已知中心在原点,左焦点为的椭圆的左顶点为,上顶点为,到直线的距离为.
(1) 求椭圆的方程;
(2) 过点作直线,使其交椭圆于、两点,交直线于点. 问:是否存在这样的直线,使是、的等比中项?若存在,求出直线的方程;若不存在,说明理由。
(3) 若椭圆方程为:(),椭圆方程为:(,且),则称椭圆是椭圆的倍相似椭圆.已知是椭圆的倍相似椭圆,若直线与两椭圆、交于四点(依次为、、、),且,试研究动点的轨迹方程。
正确答案
(1)(2)存在(3)
解析
(1)设椭圆方程为:(),
所以直线方程为:
∴到直线距离为
又,解得:,
故:椭圆方程为:.
(2) 当直线与轴重合时,,而,所以
若存在直线,使是、的等比中项,
则可设直线方程为:
代人椭圆的方程,得:即:
∴
记,, ∴,
∵,即,∴
∴,解得:,符合,所以
故存在直线,使是、的等比中项,其方程为
,即:
(3) 椭圆的倍相似椭圆的方程为:
设、、、各点坐标依次为、、、
将代人椭圆方程,得:
∴ (*)
此时:,
将代人椭圆方程,得:
∴,
∴,可得线段、中点相同,所以
由,所以,可得:
∴(满足(*)式)。
故:动点的轨迹方程为.
知识点
如图,是椭圆与双曲线的公共焦点,分别是,在第二、四象限的公共点。若四边形为矩形,则的离心率是
正确答案
解析
由已知得,设双曲线实半轴为,由椭圆及双曲线的定义和已知得到:,所以双曲线的离心率为,所以选D
知识点
如图,椭圆C:(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为,不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分。
(1)求椭圆C的方程;
(2) 求ABP的面积取最大时直线l的方程。
正确答案
(1) ;(2) y=﹣。
解析
(1)由题:; (1)
左焦点(﹣c,0)到点P(2,1)的距离为:。 (2)
由(1) (2)可解得:。
∴所求椭圆C的方程为:。
(2)易得直线OP的方程:y=x,设A(xA,yA),B(xB,yB),R(x0,y0),其中y0=x0。
∵A,B在椭圆上,
∴。
设直线AB的方程为l:y=﹣(m≠0),
代入椭圆:。
显然。
∴﹣<m<且m≠0。
由上又有:=m,=。
∴|AB|=||==。
∵点P(2,1)到直线l的距离为:。
∴SABP=d|AB|=|m+2|,
当|m+2|=,即m=﹣3 or m=0(舍去)时,(SABP)max=。
此时直线l的方程y=﹣。
知识点
已知椭圆的长轴长是焦距的两倍,其左、右焦点依次为、,抛物线的准线与轴交于,椭圆与抛物线的一个交点为.
(1)当时, ①求椭圆的方程;②直线过焦点,与抛物线交于两点,若弦长等于的周长,求直线的方程;
(2)是否存在实数,使得的边长为连续的自然数.
正确答案
(1)(2)
解析
(1)①设椭圆的实半轴长为a,短半轴长为b,半焦距为c,
当=1时,由题意得,a=2c=2,,
所以椭圆的方程为.
②依题意知直线的斜率存在,设,由得,
,由直线与抛物线有两个交点,可知.
设,由韦达定理得,
则=
因为的周长为,所以,
解得,从而可得直线的方程为
(2)假设存在满足条件的实数,由题意得,又设,设,对于抛物线M,有对于椭圆C,由得
由解得:,所以,从而,因此,的边长分别为、、,
当时,使得的边长为连续的自然数.
知识点
扫码查看完整答案与解析