热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

20.已知椭圆上的任意一点到它两个焦点的距离之和为,且它的焦距为2.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知直线与椭圆交于不同两点,且线段的中点不在圆内,求实数的取值范围.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型: 单选题
|
单选题 · 5 分

8. 线段是圆的一条直径,离心率为的双曲线为焦点.若是圆与双曲线的一个公共点,则的值为(     )

A

B

C

D

正确答案

D

解析

解析已在路上飞奔,马上就到!

知识点

双曲线的几何性质直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 13 分

20.已知以原点O为中心的椭圆,它的短轴长为,右焦点(c>0),它的长轴长为2a(a>c>0),直线与x轴相交于点A,,过点A的直线与椭圆相交于P.Q两点。

(Ⅰ)求椭圆的方程和离心率;

(Ⅱ)若,求直线PQ的方程;

(Ⅲ)设,过点P且平行于直线的直线与椭圆相交于另一点M,证明:

正确答案

(Ⅰ)解:由题意,可知椭圆的方程为.

由已知得

解得,c=2,

所以椭圆的方程为,离心率.

(Ⅱ)解:由(1)可得A(3,0).设直线PQ的方程为y=k(x-3).

联立方程组,得(3k2+1)x2-18k2x+27k2-6=0,

依题意△=12(2-3k2)>0,得.

设P(x1,y1),Q(x2,y2),则

,  ①     

.  ②

由直线PQ的方程得为y1=k(x1-3),y2=k(x2-3),于是,

y1y2=k2(x1-3) (x2-3)= k2[x1x2-3(x1+ x2)+9].        ③

,∴x1x2+y1y2=0.    ④

由①②③④得5k2=1,从而

所以直线PQ的方程为

(理科做)

(Ⅲ)证明:∵P(x1,y1),Q(x2,y2), A(3,0),

.由已知得方程组

,注意λ>1,解得

因为F(2,0), M(x1,-y1),故

.

,所以.

解析

解析已在路上飞奔,马上就到!

知识点

平面向量数量积的运算量积判断两个平面向量的垂直关系椭圆的定义及标准方程椭圆的几何性质直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 13 分

20.已知椭圆C:+=1(a>b>0)的离心率e=,椭圆C的上、下顶点分别为A1,A2,左、右顶点分别为B1,B2,左、右焦点分别为F1,F2.原点到直线A2B2的距离为.

(1)求椭圆C的方程;

(2)过原点且斜率为的直线l,与椭圆交于E,F点,试判断∠EF2F是锐角、直角还是钝角,并写出理由;

(3)P是椭圆上异于A1,A2的任一点,直线PA1,PA2,分别交轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值。

正确答案

 

  

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 13 分

20.已知椭圆C: 的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线相切.

(1)    求椭圆C的方程;

(2)   设斜率不为零的直线与椭圆相交于不同的两点,已知点的坐标为(),点在线段的垂直平分线上,且,求的值。

(3)若过点M(1,0)的直线与椭圆C相交于P, Q两点,如果 (O为坐标原点),且满足,求实数t的取值范围.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

平面向量数量积的运算向量在几何中的应用椭圆的定义及标准方程圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 13 分

20.如图,已知圆,经过椭圆的右焦点F及上顶点B,过圆外一点倾斜角为的直线交椭圆于C,D两点,

(Ⅰ)求椭圆的方程;

(Ⅱ)若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 16 分

22.设为坐标平面上的点.直线与抛物线交于点(异于点).

(1)对任意,点在抛物线上,试问当为何值时,点在某一圆上?并求出该圆的方程;

(2)若点在椭圆上运动,试问能否保持在一双曲线上?若能,求出该双曲线的方程.若不能,说明理由;

(3)对(1)中点所在的圆,设为圆上两点,且满足,试寻找一个定圆,使得恒与圆相切.

正确答案

(1)直线,与抛物线联立得,依题意,

,当时,在圆上;

(2)若点在椭圆上运动,则

(方法1)两边同除以得,

∴点在双曲线上;

(方法2) 设,则代入上式,

,∴点在双曲线上;

(3)(方法1)设,则

① 当直线的斜率为零时,

的方程为,于是(舍负)

②当直线的斜率不为零时,

的方程为,代入圆的方程得

,于是

即原点到直线的距离,与无关,

∴直线总与圆相切.

(方法2)设,原点到直线的距离为

注意到圆的外接圆,

,∴

即原点到直线的距离为定值,

∴直线总与圆相切.

解析

解析已在路上飞奔,马上就到!

知识点

圆的标准方程双曲线的定义及标准方程圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:填空题
|
填空题 · 5 分

10.已知椭圆和圆,若上存在点,使得过点引圆的两条切线,切点分别为,满足,则椭圆的离心率的取值范围是(    )

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的几何性质圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 16 分

18.设椭圆的右焦点为,直线轴交于点,若(其中为坐标原点)。

(1)求椭圆的方程;

(2)设是椭圆上的任意一点,为圆的任意一条直径(为直径的两个端点),求的最大值。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

平面向量数量积的运算椭圆的定义及标准方程圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

21.已知椭圆的离心率,且椭圆过点

(1)求椭圆的方程;

(2)设不过原点的直线与该椭圆交于两点,满足直线的斜率依次成等比数列,求面积的取值范围。

正确答案

(1)

(2)

解析

解析已在路上飞奔,马上就到!

知识点

等比数列的性质及应用椭圆的定义及标准方程圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
百度题库 > 高考 > 理科数学 > 直线、圆及圆锥曲线的交汇问题

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题