- 直线、圆及圆锥曲线的交汇问题
- 共263题
18. 已知点是直角坐标平面内的动点,点
到直线
的距离为
,到点
的距离为
,且
。
(1)求动点P所在曲线C的方程;
(2)直线过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线
的垂线,对应的垂足分别为
,试判断点F与以线段
为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)记,
,
(A、B、
是(2)中的点),问是否存在实数
,使
成立。若存在,求出
的值;若不存在,请说明理由。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
21.已知:向量,O为坐标原点,动点M满足:
.
(1)求动点 M 的轨迹 C 的方程;
(2)已知直线、
都过点
,且
,
、
与轨迹C分别交于点D、E.是否存在这样的直线
、
,使得△BDE是等腰直角三角形?若存在,指出这样的直线共有几组(无需求出直线的方程);若不存在,请说明理由.
正确答案
解:设点,则
∵
∴
∴点 M 的轨迹C是以为焦点,长轴长为 4 的椭圆
∴ ∴
∴ 动点M 的轨迹 C的方程为
(2)
由(1)知,轨迹C是椭圆,点
是它的上顶点,
设满足条件的直线、
存在,直线
的方程为
①
则直线的方程为
,②
将①代入椭圆方程并整理得:,可得
,则
.
将②代入椭圆方程并整理得:,可得
,则
由△BDE是等腰直角三角形得
∴或
④
∵方程④或
.
∴即满足条件的直线、
存在,共有3组.
解析
解析已在路上飞奔,马上就到!
知识点
18. 在平面直角坐标系xOy中,椭圆C:(a>b>0)的上顶点到焦点的距离为2,离心率为
。
(1)求a,b的值。
(2)设P是椭圆C长轴上的一个动点,过点P作斜率为k的直线l交椭圆C于A、B两点。
(ⅰ)若k=1,求△OAB面积的最大值;
(ⅱ)若PA2+PB2的值与点P的位置无关,求k的值。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
8.抛物线y=x2与直线x-y+2=0构成封闭平面区域(含边界)为D.若曲线x2-2ax+y2-4y+a2+ =0与D有公共点,则a的最小值为( ).
正确答案
解析
曲线
即为,
其圆心坐标为E(a,2),半径
由图可知,当时,
圆与点D有公共点;
当a<0时,要圆与点D有公共点,
只需圆心到直线l:x-y+2=0的距离
则a的最小值为-
知识点
8.抛物线y=x2与直线x-y+2=0构成封闭平面区域(含边界)为D.若曲线x2-2ax+y2-4y+a2+ =0与D有公共点,则a的最小值为( ).
正确答案
解析
曲线
即为,
其圆心坐标为E(a,2),半径
由图可知,当时,
圆与点D有公共点;
当a<0时,要圆与点D有公共点,
只需圆心到直线l:x-y+2=0的距离
则a的最小值为-
知识点
6.已知圆P:x2+y2=4y及抛物线S:x2=8y,过圆心P作直线 l,此直线与上述两条曲线的四个交点,自左向右顺次记为A,B,C,D,如果|AB|,|BC|,|CD|按此顺序构成一个等差数列,则直线l的斜率为( ).
正确答案
解析
由题意可知,圆P的圆心坐标为(0,2),半径为2,抛物线S的焦点为(0,2),准线方程为y=-2,画出图象如图所示,其中|BC|=4.由于|AB|,|BC|,|CD|成等差数列,所以|AB|+|CD|=8,所以|AB|+|BC|+|CD|=12,则所求问题等价于当过抛物线S的焦点的直线被抛物线所截得的线段的长度为12时,求直线的斜率.设A(x1,y1),D(x2,y2),过A,D分别向抛物线的准线作垂线,垂足分别为A',D'.根据抛物线定义得|AP|=|AA'|=y1+2,|DP|=|DD'|=y2+2,所以|AD|=|AP|+|DP|=y1+y2+4=12,得y1+y2=8.由题意可知,直线l的斜率存在,且不为0.设直线l的斜率为k(k≠0),则直线l的方程为y=kx+2,即x=,代入抛物线方程,化简得y2-(4+8k2)y+4=0,故y1+y2=4+8k2=8,解得k=±
.
知识点
21.如图,焦距为2的椭圆E的两个顶点分别为和
,且
与
共线.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若直线与椭圆E有两个不同的交点P和Q,且原点O总在以PQ为直径的
圆的内部,求实 数m的取值范围.
正确答案
解:
(Ⅰ)设椭圆E的标准方程为,由已知得
∴,∵
与
共线, ∴
,又
∴, ∴椭圆E的标准方程为
(Ⅱ)设,把直线方程
代入椭圆方程
,
消去y,得,,
∴,
(*)
∵原点O总在以PQ为直径的圆内,∴,即
又
由得
,依题意
且满足(*)
故实数m的取值范围是
解析
解析已在路上飞奔,马上就到!
知识点
21.如图,椭圆C:的焦点在x轴上,左、右顶点分别为A1、A,上顶点为B.抛物线C1、C2分别以A、B为焦点,其顶点均为坐标原点O,C1与C2相交于直线
上一点P.
(1) 求椭圆C及抛物线C1、C2的方程;
(2) 若动直线l与直线OP垂直,且与椭圆C交于不同两点M、N,已知点,求
的最小值.
正确答案
(1) 由题意得A(a,0),B(0,)
∴ 抛物线C1的方程可设为;抛物线C2的方程可设为
由
代入得a = 4
∴ 椭圆方程为,抛物线C1:
,抛物线C2:
(2)由题意可设直线l的方程为
由消去y得
由
设M(x1,y1),N(x2,y2),则
∵
∴
∵
∴ 当时,其最小值为
解析
解析已在路上飞奔,马上就到!
知识点
10.过双曲线左焦点
,倾斜角为
的直线交双曲线右支于点
,若线段
的中点在
轴上,则此双曲线的离心率为( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
23.已知直线、
与曲线
分别相交于点
、
和
、
,我们将四边形
称为曲线
的内接四边形.
(1)若直线和
将单位圆
分成长度相等的四段弧,求
的值;
(2)若直线与圆
分别交于点
、
和
、
,求证:四边形
为正方形;
(3)求证:椭圆的内接正方形有且只有一个,并求该内接正方形的面积.
正确答案
(1)2;
(2)证明略;
(3)证明略,面积为.
解析
(1)由于直线和
将单位圆
分成长度相等的四段弧,
所以,
在等腰直角中,
圆心到直线
的距离为
,
,同理
,
(2)由题知,直线关于原点对称,
因为圆的圆心为原点
,
所以,
故四边形为平行四边形.
易知,点在对角线
上.
联立解得
,
由得
,
所以,
于是,
因为,
所以四边形为正方形.
(3)证明:假设椭圆存在内接正方形,其四个顶点为
.
当直线的斜率不存在时,
设直线、
的方程为
,
因为在椭圆上,
所以,
由四边形为正方形,易知,
,
直线、
的方程为
,
正方形的面积
.
当直线的斜率存在时,
设直线、
的方程分别为
,
显然.
设,
联立得
,
所以
代人,得
,
同理可得
,
因为为正方形,
所以
解得
因为,所以
,
因此,直线与直线
关于原点
对称,
所以原点为正方形的中心
(由知
,四边形
为平行四边形)
由为正方形知
,
即
代人得,解得
(注:此时四边形
为菱形)
由为正方形知
,
因为直线与直线
的距离为
,
故
但,
由得
即
,与
矛盾.
所以,这与
矛盾.
即当直线的斜率
存在时,椭圆内不存在正方形.
综上所述,椭圆的内接正方形有且只有一个,且其面积为
.
考查方向
本题主要考查直线与圆锥曲线的综合应用,考查学生分析问题解决问题的能力、逻辑推理能力,是难题.解析几何的综合应用在近几年各省市的高考试卷中频频出现,是高考的热点问题,往往以直线、圆、椭圆、双曲线、抛物线为载体,涉及各类曲线的定义与方程、各类曲线的性质,与曲线的轨迹方程的求解、直线与圆锥曲线的位置关系等知识交汇命题.
解题思路
题(1),先找到两直线分单位圆成长度相等的四段弧的位置,求得所截得的弦长,然后利用原点到直线距离公式求得的值,从而求得
的值;
题(2),先证四边形为平行四边形,再证对角线垂直且相等,从而证得四边形
为正方形;
题(3),分类讨论说明椭圆的内接正方形有且只有一个.
易错点
找不到直线与圆或者椭圆的正确的位置关系,从而无法解题.
知识点
扫码查看完整答案与解析