热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 16 分

18. 已知点是直角坐标平面内的动点,点到直线的距离为,到点的距离为,且

(1)求动点P所在曲线C的方程;

(2)直线过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线的垂线,对应的垂足分别为,试判断点F与以线段为直径的圆的位置关系(指在圆内、圆上、圆外等情况);

(3)记(A、B、是(2)中的点),问是否存在实数,使成立。若存在,求出的值;若不存在,请说明理由。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

点与圆的位置关系椭圆的定义及标准方程直接法求轨迹方程圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 13 分

21.已知:向量,O为坐标原点,动点M满足:.

(1)求动点 M 的轨迹 C 的方程;

(2)已知直线都过点,且与轨迹C分别交于点D、E.是否存在这样的直线,使得△BDE是等腰直角三角形?若存在,指出这样的直线共有几组(无需求出直线的方程);若不存在,请说明理由.

正确答案

解:设点,则

∴点 M 的轨迹C是以为焦点,长轴长为 4 的椭圆

∴   

∴    动点M 的轨迹 C的方程为

(2)

由(1)知,轨迹C是椭圆,点是它的上顶点,

设满足条件的直线存在,直线的方程为  ①

则直线的方程为,②

将①代入椭圆方程并整理得:,可得,则.

将②代入椭圆方程并整理得:,可得,则

由△BDE是等腰直角三角形得

    ④

∵方程④.

∴即满足条件的直线存在,共有3组.

解析

解析已在路上飞奔,马上就到!

知识点

定义法求轨迹方程圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 16 分

18. 在平面直角坐标系xOy中,椭圆C:(a>b>0)的上顶点到焦点的距离为2,离心率为

(1)求a,b的值。

(2)设P是椭圆C长轴上的一个动点,过点P作斜率为k的直线l交椭圆C于A、B两点。

(ⅰ)若k=1,求△OAB面积的最大值;

(ⅱ)若PA2+PB2的值与点P的位置无关,求k的值。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型: 单选题
|
单选题 · 5 分

8.抛物线y=x2与直线x-y+2=0构成封闭平面区域(含边界)为D.若曲线x2-2ax+y2-4y+a2+ =0与D有公共点,则a的最小值为(  ).

A

B-

C-

D-

正确答案

C

解析

曲线

即为,

其圆心坐标为E(a,2),半径

由图可知,当时,

圆与点D有公共点;

当a<0时,要圆与点D有公共点,

只需圆心到直线l:x-y+2=0的距离

则a的最小值为-

知识点

直线与抛物线的位置关系圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型: 单选题
|
单选题 · 5 分

8.抛物线y=x2与直线x-y+2=0构成封闭平面区域(含边界)为D.若曲线x2-2ax+y2-4y+a2+ =0与D有公共点,则a的最小值为(  ).

A

B-

C-

D-

正确答案

C

解析

曲线

即为,

其圆心坐标为E(a,2),半径

由图可知,当时,

圆与点D有公共点;

当a<0时,要圆与点D有公共点,

只需圆心到直线l:x-y+2=0的距离

则a的最小值为-

知识点

直线与抛物线的位置关系直线、圆及圆锥曲线的交汇问题
1
题型: 单选题
|
单选题 · 5 分

6.已知圆P:x2+y2=4y及抛物线S:x2=8y,过圆心P作直线 l,此直线与上述两条曲线的四个交点,自左向右顺次记为A,B,C,D,如果|AB|,|BC|,|CD|按此顺序构成一个等差数列,则直线l的斜率为(  ).

A±

B

C±

D

正确答案

A

解析

由题意可知,圆P的圆心坐标为(0,2),半径为2,抛物线S的焦点为(0,2),准线方程为y=-2,画出图象如图所示,其中|BC|=4.由于|AB|,|BC|,|CD|成等差数列,所以|AB|+|CD|=8,所以|AB|+|BC|+|CD|=12,则所求问题等价于当过抛物线S的焦点的直线被抛物线所截得的线段的长度为12时,求直线的斜率.设A(x1,y1),D(x2,y2),过A,D分别向抛物线的准线作垂线,垂足分别为A',D'.根据抛物线定义得|AP|=|AA'|=y1+2,|DP|=|DD'|=y2+2,所以|AD|=|AP|+|DP|=y1+y2+4=12,得y1+y2=8.由题意可知,直线l的斜率存在,且不为0.设直线l的斜率为k(k≠0),则直线l的方程为y=kx+2,即x=,代入抛物线方程,化简得y2-(4+8k2)y+4=0,故y1+y2=4+8k2=8,解得k=±.

知识点

等差数列的性质及应用直线的倾斜角与斜率抛物线的标准方程和几何性质直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

21.如图,焦距为2的椭圆E的两个顶点分别为,且共线.

(Ⅰ)求椭圆E的标准方程;

(Ⅱ)若直线与椭圆E有两个不同的交点PQ,且原点O总在以PQ为直径的

圆的内部,求实  数m的取值范围.

正确答案

解:

(Ⅰ)设椭圆E的标准方程为,由已知得

,∵共线,   ∴,又

, ∴椭圆E的标准方程为

(Ⅱ)设,把直线方程代入椭圆方程

消去y,得,,

,     

(*)

∵原点O总在以PQ为直径的圆内,∴,即

,依题意且满足(*)

故实数m的取值范围是

解析

解析已在路上飞奔,马上就到!

知识点

平行向量与共线向量向量在几何中的应用椭圆的定义及标准方程圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

21.如图,椭圆C的焦点在x轴上,左、右顶点分别为A1A,上顶点为B.抛物线C1C2分别以A、B为焦点,其顶点均为坐标原点OC1C2相交于直线上一点P

(1)  求椭圆C及抛物线C1C2的方程;

(2)  若动直线l与直线OP垂直,且与椭圆C交于不同两点M、N已知点,求的最小值.

正确答案

(1) 由题意得Aa,0),B(0,

∴ 抛物线C1的方程可设为;抛物线C2的方程可设为

代入a = 4

∴ 椭圆方程为,抛物线C1,抛物线C2

(2)由题意可设直线l的方程为

消去y

Mx1y1),Nx2y2),则

∵ 

∴ 当时,其最小值为

解析

解析已在路上飞奔,马上就到!

知识点

平面向量数量积的运算椭圆的定义及标准方程抛物线的标准方程和几何性质圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型: 单选题
|
单选题 · 5 分

10.过双曲线左焦点,倾斜角为的直线交双曲线右支于点,若线段的中点在轴上,则此双曲线的离心率为(  )

A

B

C3

D

正确答案

D

解析

解析已在路上飞奔,马上就到!

知识点

双曲线的几何性质直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 18 分

23.已知直线与曲线分别相交于点,我们将四边形称为曲线的内接四边形.

(1)若直线将单位圆分成长度相等的四段弧,求的值;

(2)若直线与圆分别交于点,求证:四边形为正方形;

(3)求证:椭圆的内接正方形有且只有一个,并求该内接正方形的面积.

正确答案

(1)2;

(2)证明略;

(3)证明略,面积为

解析

(1)由于直线将单位圆分成长度相等的四段弧,

所以

在等腰直角中,

圆心到直线的距离为

,同理                            

(2)由题知,直线关于原点对称,

因为圆的圆心为原点

所以

故四边形为平行四边形.

易知,点在对角线上.

联立解得

所以

于是

因为

所以四边形为正方形.                             

(3)证明:假设椭圆存在内接正方形,其四个顶点为

当直线的斜率不存在时,

设直线的方程为

因为在椭圆上,

所以

由四边形为正方形,易知,

直线的方程为

正方形的面积.                      

当直线的斜率存在时,

设直线的方程分别为

显然

联立

所以

代人,得

同理可得

因为为正方形,

所以

解得

因为,所以

因此,直线与直线关于原点对称,

所以原点为正方形的中心

(由,四边形为平行四边形)

为正方形知

代人得,解得(注:此时四边形为菱形)

为正方形知

因为直线与直线的距离为

,与矛盾.

所以,这与矛盾.

即当直线的斜率存在时,椭圆内不存在正方形.

综上所述,椭圆的内接正方形有且只有一个,且其面积为

考查方向

本题主要考查直线与圆锥曲线的综合应用,考查学生分析问题解决问题的能力、逻辑推理能力,是难题.解析几何的综合应用在近几年各省市的高考试卷中频频出现,是高考的热点问题,往往以直线、圆、椭圆、双曲线、抛物线为载体,涉及各类曲线的定义与方程、各类曲线的性质,与曲线的轨迹方程的求解、直线与圆锥曲线的位置关系等知识交汇命题.

解题思路

题(1),先找到两直线分单位圆成长度相等的四段弧的位置,求得所截得的弦长,然后利用原点到直线距离公式求得的值,从而求得的值;

题(2),先证四边形为平行四边形,再证对角线垂直且相等,从而证得四边形为正方形;

题(3),分类讨论说明椭圆的内接正方形有且只有一个.

易错点

找不到直线与圆或者椭圆的正确的位置关系,从而无法解题.

知识点

直线与圆相交的性质直线与椭圆的位置关系直线、圆及圆锥曲线的交汇问题
百度题库 > 高考 > 理科数学 > 直线、圆及圆锥曲线的交汇问题

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题