热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 4 分

14. 已知双曲线的左、右焦点分别是,过的直线交双曲线的右支于两点,若,且,则该双曲线的离心率为  ▲  .

正确答案

解析

设双曲线的离心率为e,在三角 化简并整理得,

考查方向

考查直线与双曲线的位置关系,考查双曲线的离心率

解题思路

先由题意及双曲线的定义,可得,再利用焦半径公式,,由余弦定可求得a,b,c的等式关系,再从中求离心率

易错点

利用焦半径公式易出错,寻找a,b,c关系时找不到突破口

知识点

双曲线的几何性质直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 14 分

如图所示,椭圆C1:+=1(a>b>0)的离心率为,x轴被曲线C2yx2b截得的线段长等于C1的短轴长.C2y轴的交点为M,过坐标原点O的直线lC2相交于点AB,直线MAMB分别与C1相交于点DE.

24.求C1C2的方程

25.求证:MAMB

26.  记△MAB,△MDE的面积分别为S1S2,若=λ,求λ的取值范围.

第(1)小题正确答案及相关解析

正确答案

C1的方程:+y2=1;C2的方程:y=x2-1

解析

由题意,知=,所以a2=2b2. ……1分

又2=2b,得b=1. ……2分

所以曲线C2的方程:y=x2-1,椭圆C1的方程:+y2=1. ……3分

考查方向

主要考查直线与圆锥曲线的综合应用能力,具体涉及到抛物线的方程,椭圆的方程,直线与圆锥曲线的相关知识. 本小题对考生的化归与转化思想、运算求解能力都有很高要求.

解题思路

根据题意直接列出a,b,c方程, 可求出两条曲线的方程

易错点

易在运算中出错,在转化直线与圆锥曲线关系过程中,易在切入点出错

第(2)小题正确答案及相关解析

正确答案

解析

证明 设直线AB:y=kx,A(x1,y1),B(x2,y2),由题意,知M(0,-1).

则⇒x2-kx-1=0,  ……4分

则x1·x2=-1,x1+x2=k,

=(x1,y1+1)·(x2,y2+1)=(k2+1)x1x2+k(x1+x2)+1=-(1+k2)+k2+1=0,

所以MA⊥MB. ……7分

考查方向

主要考查直线与圆锥曲线的综合应用能力,具体涉及到抛物线的方程,椭圆的方程,直线与圆锥曲线的相关知识. 本小题对考生的化归与转化思想、运算求解能力都有很高要求.

解题思路

设直线方程、交点坐标. 通过向量的数量积等于零, 证明两条线互相垂直

易错点

易在运算中出错,在转化直线与圆锥曲线关系过程中,易在切入点出错

第(3)小题正确答案及相关解析

正确答案

[,+∞)

解析

解: 设直线MA的方程:y=k1x-1,直线MB的方程:y=k2x-1,……8分

由25题知k1k2=-1,M(0,-1),

由解得或 ……9分

所以A(k1,k-1).同理,可得B(k2,k-1).……10分

故S1=|MA|·|MB|=·|k1||k2|.

由解得或

所以D(,).同理,可得E(,).……11分

故S2=|MD|·|ME|=·,

=λ==≥,……13分

则λ的取值范围是[,+∞).……14分

考查方向

主要考查直线与圆锥曲线的综合应用能力,具体涉及到抛物线的方程,椭圆的方程,直线与圆锥曲线的相关知识. 本小题对考生的化归与转化思想、运算求解能力都有很高要求.

解题思路

设MA,MB的方程,通过与抛物线,椭圆联立方程组,解出A,B,D,E的坐标,然后分别用表示面积,把表示成关于的关系式,最后用均值不等式求解λ的取值范围.

易错点

易在运算中出错,在转化直线与圆锥曲线关系过程中,易在切入点出错

1
题型:简答题
|
简答题 · 12 分

已知抛物线的焦点为,直线过点交抛物线两点,且以为直径的圆与直线相切于点.

23.求的方程;

24.若圆与直线相切于点,求直线的方程和圆的方程.

第(1)小题正确答案及相关解析

正确答案

(1)抛物线的方程为

解析

试题分析: 本题属于抛物线、直线、圆的方程及位置关系考查题型,意在考查考生的分析问题、解决问题的能力及运算能力。

(Ⅰ)设,则

又∵以为直径的圆与直线相切,

,故

∴抛物线的方程为

考查方向

本题考查了抛物线的定义及直线与圆的位置关系,考查考生的计算能力和逻辑推理能力。

解题思路

(1)直线过点交抛物线两点,且以为直径的圆与直线相切于点,从而得出p的值

(2)通过直线与抛物线相交于A,B,得到以AB为直径的圆的圆心坐标,再通过求出直线方程和圆的方程。

易错点

为直径的圆与直线相切的转化易推理出错

第(2)小题正确答案及相关解析

正确答案

(2)直线的方程为,即

的方程为

解析

试题分析: 本题属于抛物线、直线、圆的方程及位置关系考查题型,意在考查考生的分析问题、解决问题的能力及运算能力。

(Ⅱ)设直线的方程为,代入中,

化简整理得

∴圆心的坐标为

∵圆与直线相切于点

,解得

此时直线的方程为,即

圆心,半径

的方程为.

考查方向

本题考查了抛物线的定义及直线与圆的位置关系,考查考生的计算能力和逻辑推理能力。

解题思路

(1)直线过点交抛物线两点,且以为直径的圆与直线相切于点,从而得出p的值

(2)通过直线与抛物线相交于A,B,得到以AB为直径的圆的圆心坐标,再通过求出直线方程和圆的方程。

易错点

为直径的圆与直线相切的转化易推理出错

1
题型:填空题
|
填空题 · 5 分

16.已知直线与椭圆相交于两点,若椭圆上存在点,使得是等边三角形,则椭圆的离心率_____.

正确答案

解析

根据椭圆参数方程设出B点坐标(acost,bsint),由为正三角形知

从而得出点P (-asint,bcost),

,而tant= 整理得,所以可算得e.=

考查方向

本题主要考查了椭圆方程及性质,考查考生数形结合思想和运算求解能力。

解题思路

根据椭圆参数方程设出B点坐标(acost,bsint),由为正三角形知从而得出点P(-asint,bcost),又,而tant= 整理得,所以可算得e.

易错点

为等边三角形的处理不灵活导致运算量大

知识点

椭圆的定义及标准方程椭圆的几何性质直线、圆及圆锥曲线的交汇问题
1
题型: 单选题
|
单选题 · 5 分

6.过双曲线=1(a>0,b>0)的右焦点与对称轴垂直的直线与渐近线相交于A,B两  点,若△OAB的面积为,则双曲线的离心率为(    )

A

B

C

D

正确答案

D

解析

由题意,得代入,得交点,则,整理,得,故A选项不正确,B选项不正确,C选项不正确,所以选D选项。

考查方向

本题主要考查了双曲线的性质,考查考生的作图及应用知识的能力。

解题思路

根据题意求出A,B两点的坐标,由△OAB的面积为得出

故A选项不正确,B选项不正确,C选项不正确,所以选D选项。

易错点

对△OAB的面积的转化较繁琐而出错。

知识点

双曲线的几何性质直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

已知曲线C的方程是(m>0,n>0),且曲线C过A(),B(,  )两点,O为坐标原点.

23.求曲线C的方程;

24.设M(x1,y1),N(x2,y2)是曲线C上两点,且OM⊥ON,求证:直线MN恒与一个定圆相切.

第(1)小题正确答案及相关解析

正确答案

见解析

解析

解:(1)由题可得:解得

所以曲线方程为.

考查方向

本题考察了曲线方程的求解,考察了直线与曲线的位置关系

解题思路

1)根据题意联立解方程求出曲线方程

2)写出直线方程,与曲线联立,得到韦达定理

3)根据OM⊥ON,得到x1,x2的关系

4)解出含参直线方程,得出定点

易错点

本题较简单,一般在计算出错和对OM⊥ON处理出错

第(2)小题正确答案及相关解析

正确答案

见解析

解析

解:

(2)由题得:

原点到直线的距离

得:

所以

=

所以直线恒与定圆相切。

考查方向

本题考察了曲线方程的求解,考察了直线与曲线的位置关系

解题思路

1)根据题意联立解方程求出曲线方程

2)写出直线方程,与曲线联立,得到韦达定理

3)根据OM⊥ON,得到x1,x2的关系

4)解出含参直线方程,得出定点

易错点

本题较简单,一般在计算出错和对OM⊥ON处理出错

1
题型:简答题
|
简答题 · 13 分

20. 如图:A,B,C是椭圆的顶点,点为椭圆的右焦点,原点O到直线CF的距离为,且椭圆过点.

(I)求椭圆的方程;

(II)若P是椭圆上除顶点外的任意一点,直线CP交x轴于点E,直线BC与AP相交于点D,连结DE.设直线AP的斜率为k,直线DE的斜率为,问是否存在实数,使得成立,若存在求出的值,若不存在,请说明理由.

正确答案

见解析

解析

考查方向

本题考察了椭圆的定义及标准方程,,考察了圆锥曲线的定点、定值问题,

解题思路

1)点到直线的距离公式得到a,b的关系,根据点在椭圆上联立求出椭圆方程

2)设点p,根据要求求出直线AP,与直线BC求出点D

3)根据直线CP得到点E

4)使用两点间斜率公式得到DE斜率,化简得到结论

易错点

本题主要有以下几个错误:

1)椭圆方程求错

2)找不到有效突破点,导致运算量加大,无法得出理想结果

知识点

椭圆的定义及标准方程椭圆的几何性质直线、圆及圆锥曲线的交汇问题
1
题型: 单选题
|
单选题 · 5 分

4.已知抛物线,过焦点的直线交抛物线于两点(点在第一象限),若直线的倾斜角为,则等于(   )

A

B

C

D

正确答案

A

解析

考查方向

考查抛物线的性质,抛物线的焦半径公式

解题思路

根据题意, 直接用焦半径表示AF与BF的长度.

易错点

忽略直线过焦点,导致AF与BF的长度无法用3表示, 忽略焦点的位置,容易把焦半径公式写成

知识点

抛物线的定义及应用抛物线的标准方程和几何性质直线、圆及圆锥曲线的交汇问题
1
题型:填空题
|
填空题 · 5 分

14.  已知直线l:y=kx+t号圆:x2 +(y+l)2 =1相切且与抛物线C:x2 =4y交于不同的两点M,N,则实数t的取值范围是____.

正确答案

解析

因为直线与圆相切,所以 .又把直线方程代入抛物线方程并整理得,于是由,得

考查方向

本题主要考查了直线与圆和抛物线的位置关系,考查考生分析问题和解决问题的能力。

解题思路

先利用直线与圆相切找到k与t之间的关系,再通过直线与抛物线有两个不同的交点求出t的取值范围。

易错点

直线中有两个变量,如何把k转化或者求出。

知识点

抛物线的标准方程和几何性质直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

已知Q为椭圆C: (a>b>0)的上顶点,P是C上的一点,以PQ为直径的圆经过椭圆C的右焦点F.

23.求椭圆C的方程:

24.若直线l:y=kx+m(|k|≤)与椭圆C相交于A,B两点,M为椭圆C上任意一点,且线段OM的中点与线段AB的中点重合,求|OM|的取值范围.

第(1)小题正确答案及相关解析

正确答案

(1)

解析

(1)因为

由题设可知,则            ①

又点在椭圆上,∴,解得,所以   ②

①②联立解得,

故所求椭圆的方程为

考查方向

本题主要考查了椭圆的方程及直线与椭圆的相交问题,考查考生的运算能力。

解题思路

(1)通过列式求解(2)利用线段OM的中点与线段AB的中点重合转化出再代入椭圆方程,用k来表示出

易错点

线段OM的中点与线段AB的中点重合的转化

第(2)小题正确答案及相关解析

正确答案

(2)

解析

(2)设三点的坐标分别为

两点在椭圆上,则,则

由(1)-(2),得  (3).

由线段中点与线段的中点重合,则

,即   (6)

把(4)(5)(6)代入(3)整理,得

于是由,得

所以

因为,所以,有

所以,即的取值范围为

考查方向

本题主要考查了椭圆的方程及直线与椭圆的相交问题,考查考生的运算能力。

解题思路

(1)通过列式求解(2)利用线段OM的中点与线段AB的中点重合转化出再代入椭圆方程,用k来表示出

易错点

线段OM的中点与线段AB的中点重合的转化

百度题库 > 高考 > 理科数学 > 直线、圆及圆锥曲线的交汇问题

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题