热门试卷

X 查看更多试卷
1
题型: 单选题
|
单选题 · 5 分

8.过双曲线的左顶点作斜率为1的直线,该直线与双曲线两条渐近线的交点分别为.若,则此双曲线的离心率为(   )

A

B

C

D

正确答案

B

解析

设直线AC的方程为,又双曲线的两条渐近线方程为

可得      即B点坐标为

 可得,   即A点坐标为.  由可得,

,化简可得,所以此双曲线的离心率

,故选B.

考查方向

本题主要考查了双曲线的渐近线、离心率以及通过方程组求直线的交点坐标,是圆锥曲线中很重要的考察对象,是高频考点。

解题思路

设出过点且斜率为1的直线方程,与两条渐近线方程,联立解出交点坐标,再根据,容易得到结论。

易错点

求直线与双曲线的渐近线交点时,发生错误。

知识点

双曲线的几何性质直线、圆及圆锥曲线的交汇问题
1
题型:填空题
|
填空题 · 5 分

14.已知抛物线与经过该抛物线焦点的直线在第一象限的交点为轴和准线上的投影分别为点,则直线的斜率为

正确答案

2

解析

如图,由题意可得 AF=AC设AF=3m,由AB=2BC,可AB=2m,BC=m,过A作AD垂直x轴于D,设A的横坐标为则3m=1+=2m,所以m=1,A(2,2),F(1,0),所以直线AF的斜率为2

考查方向

本小题考查直线与抛物线的位置关系

解题思路

画出抛物线简图,用抛物线定义,结合题中的位置关系,数量关系,求出点A(2,2),既然得到直线AF的斜率为2

易错点

对抛物线定义及性质掌握不熟

知识点

抛物线的标准方程和几何性质直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 14 分

已知点和椭圆

26.设椭圆的两个焦点分别为,试求的周长及椭圆的离心率;

27.若直线与椭圆交于两个不同的点,直线轴分别交于两点,求证:

第(1)小题正确答案及相关解析

正确答案

;

解析

试题分析:本题是直线与圆锥曲线综合应用问题,解题时利用椭圆定义完成第一问。再由“”要想到“”最终转换成“”,再利用韦达定理去完成。

(Ⅰ)由题意可知,,所以

因为是椭圆上的点,由椭圆定义得

所以的周长为

易得椭圆的离心率.………………………………………………………4分

考查方向

本题考查椭圆的标准方程和几何性质、直线方程与圆锥曲线综合应用等基础知识和方法,考查用代数的方法研究圆锥曲线的性质及数形结合的思想应用,意在考查运算能力和分析问题和解决问题的能力,较难.

解题思路

本题考查直线与圆锥曲线综合应用问题,解题步骤如下:

根据题意是椭圆上的点,由椭圆定义得,易得离心率。

本题第二问由“”要想到“”最终转换成“”再利用韦达定理去研究,得到结论。

易错点

未注意到点在椭圆上而在运算中出错。本题第二问在“”的理解和转换成“”上极易出错。

第(2)小题正确答案及相关解析

正确答案

证明略.

解析

试题分析:本题是直线与圆锥曲线综合应用问题,解题时利用椭圆定义完成第一问。再由“”要想到“”最终转换成“”,再利用韦达定理去完成。

(Ⅱ)由

因为直线与椭圆有两个交点,并注意到直线不过点

所以解得

,则,

显然直线的斜率存在,设直线的斜率分别为

因为,所以

所以

考查方向

本题考查椭圆的标准方程和几何性质、直线方程与圆锥曲线综合应用等基础知识和方法,考查用代数的方法研究圆锥曲线的性质及数形结合的思想应用,意在考查运算能力和分析问题和解决问题的能力,较难.

解题思路

本题考查直线与圆锥曲线综合应用问题,解题步骤如下:

根据题意是椭圆上的点,由椭圆定义得,易得离心率。

本题第二问由“”要想到“”最终转换成“”再利用韦达定理去研究,得到结论。

易错点

未注意到点在椭圆上而在运算中出错。本题第二问在“”的理解和转换成“”上极易出错。

1
题型:简答题
|
简答题 · 16 分

如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.

23.求椭圆的标准方程;

24.过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.

第(1)小题正确答案及相关解析

正确答案

+y2=1;

解析

(1)由题意可得,e==

且c+=3,解得c=1,a=

则b=1,即有椭圆方程为+y2=1;

考查方向

本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题.

解题思路

(1)运用离心率公式和准线方程,可得a,c的方程,解得a,c,再由a,b,c的关系,可得b,进而得到椭圆方程;

易错点

本题考查椭圆的方程和性质,在应用几何意义时易错.

第(2)小题正确答案及相关解析

正确答案

y=x﹣1或y=﹣x+1.

解析

(2)当AB⊥x轴,AB=,CP=3,不合题意;

当AB与x轴不垂直,设直线AB:y=k(x﹣1),A(x1,y1),B(x2,y2),

将AB方程代入椭圆方程可得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,

则x1+x2=,x1x2=

则C(),且|AB|==

若k=0,则AB的垂直平分线为y轴,与左准线平行,不合题意;

则k≠0,故PC:y+=﹣(x﹣),P(﹣2,),

从而|PC|=

由|PC|=2|AB|,可得=,解得k=±1,

此时AB的方程为y=x﹣1或y=﹣x+1.

考查方向

本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题.

解题思路

(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.

易错点

本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,计算易错.

1
题型:简答题
|
简答题 · 13 分

已知椭圆的左右顶点分别为,点为椭圆上异于的任意一点.

24.求直线的斜率之积;

25.设,过点作与轴不重合的任意直线交椭圆两点.则是否存在实数,使得以为直径的圆恒过点?若存在,求出的值;若不存在,请说明理由。

第(1)小题正确答案及相关解析

正确答案

直线的斜率之积为

解析

.设点. 则有,即

考查方向

通过椭圆的定义及几何性质,直线与椭圆的位置关系等知识,考查考生数形结合及函数与方程的思想方法,同时也考查考生推理运算求解能力、等价转化思想,是近几年的高频考点,也是高考中圆锥曲线必不可少的内容。

解题思路

解题步骤如下:由椭圆的方程,可得到A ,B两点的坐标,设出点P(xy),即可表示出直线的斜率,将其代入椭圆方程,化简即可得出结论;

易错点

本题是综合性比较强的大题,涉及到的的知识点比较多,计算量较大,所以在计算时易发生错误 。

第(2)小题正确答案及相关解析

正确答案

存在,满足题意.

解析

解析】令.轴不重合,∴设.

[来源:Zxxk.Com]

    由题意,得.即 

将(*)式代入上式,得

展开,得

整理,得.解得(舍去).

经检验,能使成立.故存在,满足题意.

考查方向

通过椭圆的定义及几何性质,直线与椭圆的位置关系等知识,考查考生数形结合及函数与方程的思想方法,同时也考查考生推理运算求解能力、等价转化思想,是近几年的高频考点,也是高考中圆锥曲线必不可少的内容。

解题思路

解题步骤如下:要满足以为直径的圆恒过点,只需满足即可.由于直线过点,由题可设出直线l的方程,即代入到椭圆方程消去x,即可得到关于y的一元二次方程,再利用根与系数之间的关系,化简,,最后得0,即可证明结论。

易错点

本题是综合性比较强的大题,涉及到的的知识点比较多,计算量较大,所以在计算时易发生错误 。

1
题型:简答题
|
简答题 · 12 分

已知为椭圆上的一个动点,弦分别过左右焦点,且当线段的中点在轴上时,.

24.求该椭圆的离心率;

25.设,试判断是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.

第(1)小题正确答案及相关解析

正确答案

.e=

解析

当线段A的中点在y轴上时,AC垂直于轴,为直角三角形.

因为cos∠,所以||=3||,易知||=,由椭圆的定义||+||=2a

,所以e=

考查方向

本题主要考查的是椭圆的离心率,直线与椭圆的位置关系、解析几何定值问题

解题思路

先证出为直角三角形,求出,再由定义得到a,b方程, 从中解出离心率

易错点

解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。

第(2)小题正确答案及相关解析

正确答案

+是定值6

解析

由24得椭圆方程为,焦点坐标为,当AB、AC的斜率都存在时,设,A()、B()、C()

则直线AC的方程为y=, 代入椭圆方程得,=0

 又,同理,+=6

(2) 若AB⊥x轴,则=1,,这时也有.+=6.

综上所述,+是定值6

考查方向

本题主要考查的是椭圆的离心率,直线与椭圆的位置关系、解析几何定值问题

解题思路

由24得到含有b的椭圆方程,根据题意对直线AB、AC的斜率进行分为讨论,设出坐标,联立方程组,利用根与系数关系,结合向量关系式,将向量关系转化为坐标关系,用A的坐标及b,表求,验证是否为定值。

易错点

解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。

1
题型:简答题
|
简答题 · 14 分

已知椭圆的焦点分别为.

25.求以线段为直径的圆的方程;

26.过点任作一条直线与椭圆交于不同的两点.在轴上是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由.

第(1)小题正确答案及相关解析

正确答案

;

解析

试题分析:本题是直线与圆锥曲线综合应用问题,解题时利用椭圆定义完成第一问。再由“”转换成“”,再利用韦达定理去完成。

(I)因为,所以.

所以以线段为直径的圆的方程为.……………………………3分

考查方向

本题考查椭圆、圆的标准方程和几何性质、直线方程与圆锥曲线综合应用等基础知识和方法,考查用代数的方法研究圆锥曲线的性质及数形结合的思想应用,意在考查运算能力和分析推理能力,较难。

解题思路

本题考查直线与圆锥曲线综合应用问题,解题步骤如下:根据题意直接写出以线段为直径的圆的方程即可。本题第二问由“”转换成“”再利用韦达定理去研究,得到结论。

易错点

本题第二问在“”的理解和转换成“”上极易出错。

第(2)小题正确答案及相关解析

正确答案

解析

试题分析:本题是直线与圆锥曲线综合应用问题,解题时利用椭圆定义完成第一问。再由“”转换成“”,再利用韦达定理去完成。

则直线的斜率存在,分别设为,.

等价于.

依题意,直线的斜率存在,故设直线的方程为.

,得.

因为直线与椭圆有两个交点,所以.

,解得.

,则

.

,

时,

所以

化简得,

所以.

时,也成立.

所以存在点,使得.……………………………14分

考查方向

本题考查椭圆、圆的标准方程和几何性质、直线方程与圆锥曲线综合应用等基础知识和方法,考查用代数的方法研究圆锥曲线的性质及数形结合的思想应用,意在考查运算能力和分析推理能力,较难。

解题思路

本题考查直线与圆锥曲线综合应用问题,解题步骤如下:根据题意直接写出以线段为直径的圆的方程即可。本题第二问由“”转换成“”再利用韦达定理去研究,得到结论。

易错点

本题第二问在“”的理解和转换成“”上极易出错。

1
题型:简答题
|
简答题 · 12 分

已知抛物线,过其焦点作斜率为1的直线交抛物线CMN两点,且

23.求抛物线C的方程;

24.已知动圆P的圆心在抛物线C上,且过定点D(0,4),若动圆Px轴交于AB两点,且,求的最小值.

第(1)小题正确答案及相关解析

正确答案

(Ⅰ)

解析

(1) 设抛物线的焦点为,则直线

,得     ………………………2分

  ………………………4分

抛物线的方程为      ………………………5分

考查方向

抛物线与圆的定义与几何性质,不等式的应用.

解题思路

过抛物线焦点的弦长运用抛物线的定义可求得;求出的函数表达式,再求最值.

易错点

本题抛物线为开口向上的,故焦点弦长为;求函数的最值时注意定义域.

第(2)小题正确答案及相关解析

正确答案

.

解析

设动圆圆心,则

且圆

,整理得:

解得:,             ………………………7分

,…………9分

时,

时,

所以的最小值为.   ………………………12分

考查方向

抛物线与圆的定义与几何性质,不等式的应用.

解题思路

过抛物线焦点的弦长运用抛物线的定义可求得;求出的函数表达式,再求最值.

易错点

本题抛物线为开口向上的,故焦点弦长为;求函数的最值时注意定义域.

1
题型: 单选题
|
单选题 · 5 分

7. 在平面直角坐标系中,双曲线过点,且其两条渐近线的方程分别为,则双曲线的标准方程为

A

B

C                     

D 或

正确答案

B

解析

设双曲线的标准方程为

又因为点在双曲线上,

所以,所求双曲线的标准方程我

考查方向

本题主要考查了双曲线的渐近线及其标准方程之间的联系。

解题思路

采用待定系数法,由由双曲线的渐近线设标准方程

把点P代入方程求解,即可得到结果。

易错点

由双曲线的渐近线设标准方程出错

知识点

双曲线的定义及标准方程双曲线的几何性质直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
单选题

前间壁心肌梗死特征性心电图改变,见于

A.V3、V4、V5
B.V1、V2、V3、V4、V5
C.V1、V2、V3
D.V5、I、aVL
E.Ⅱ、Ⅲ、aVF

正确答案

C

解析

暂无解析

百度题库 > 高考 > 理科数学 > 直线、圆及圆锥曲线的交汇问题

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题