- 直线、圆及圆锥曲线的交汇问题
- 共263题
若双曲线的一条渐近线与圆
至多有一个交点,则双曲线离心率的取值范围是( )。
正确答案
解析
略
知识点
已知椭圆的中心在原点
,焦点在
轴上,离心率为
,右焦点到到右顶点的距离为
。
(1)求椭圆的标准方程;
(2)是否存在与椭圆交于
,
两点的直线
:
,使得
成立?若存在,求出实数
的取值范围,若不存在,请说明理由。
正确答案
见解析
解析
(1)设椭圆的方程为
,半焦距为
.
依题意,由右焦点到右顶点的距离为
,得
。
解得,
。
所以。
所以椭圆的标准方程是
。 ……………4分
(2)解:存在直线,使得
成立.理由如下:
由得
。
,化简得
。
设,则
,
。
若成立,
即,等价于
,所以
。
,
,
,
化简得,。
将代入
中,
,
解得,。
又由,
,
从而,
或
。
所以实数的取值范围是
。 ……………14分
知识点
已知点是平面直角坐标系上的一个动点,点
到直线
的距离等于点
到点
的距离的2倍,记动点
的轨迹为曲线
.
(1)求曲线的方程;
(2)斜率为的直线
与曲线
交于
两个不同点,若直线
不过点
,设直线
的斜率分别为
,求
的数值;
(3)试问:是否存在一个定圆,与以动点
为圆心,以
为半径的圆相内切?若存在,求出这个定圆的方程;若不存在,说明理由。
正确答案
见解析
解析
(1)由题知,有.
化简,得曲线的方程:
,
(2)∵直线的斜率为
,且不过
点,
∴可设直线:
。
联立方程组得
。
又交点为,
∴,
∴
(3)答:一定存在满足题意的定圆.
理由:∵动圆与定圆
相内切,
∴两圆的圆心之间距离与其中一个圆的半径之和或差必为定值.
又恰好是曲线(椭圆)
的右焦点,且
是曲线
上的动点,
记曲线的左焦点为
,联想椭圆轨迹定义,有
,
∴若定圆的圆心与点
重合,定圆的半径为4时,则定圆
满足题意.
∴定圆的方程为:
.
知识点
已知抛物线的方程为,直线
的方程为
,点A
关于直线
的对称点在抛物线上。
(1)求抛物线的方程;
(2)已知,点
是抛物线的焦点,M是抛物线上的动点,求
的最小值及此时点M的坐标;
(3)设点B、C是抛物线上的动点,点D是抛物线与轴正半轴交点,△BCD是以D为直角顶点的直角三角形,试探究直线BC是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由,
正确答案
见解析。
解析
(1)
设点A(3,-1)关于直线的对称点为坐标为
(x,y),
则解得
-
把点(1,3)代入
,解得a = 4,
所以抛物线的方程为
(2)∵是抛物线的焦点,抛物线的顶点为(0,-1),
∴抛物线的准线为,
过点M作准线的垂线,垂足为A,由抛物线的定义知,
∴=
,当且仅当P、M、A三点共线时“=”成立,
即当点M为过点P所作的抛物线准线的垂线与抛物线的交点时,取最小值,
∴,这时点M的坐标为
。
(3)BC所在的直线经过定点,该定点坐标为,
令,可得D点的坐标为
设,显然
,
则-
--
∵,∴
,即
直线BC的方程为
即-
所以直线BC经过定点.--
知识点
已知椭圆:
(
)的焦距为
,且过点(
,
),右焦点为
,设
,
是
上的两个动点,线段
的中点
的横坐标为
,线段
的中垂线交椭圆
于
,
两点。
(1)求椭圆的方程;
(2)求的取值范围。
正确答案
见解析。
解析
(1) 因为焦距为,所以
,因为椭圆
过点(
,
),
所以,故
,
… 2分
所以椭圆的方程为
…………4分(2) 由题意,当直线AB垂直于
轴时,直线AB方程为
,此时
、
,得
。……… 5分
当直线不垂直于
轴时,设直线
的斜率为
(
),
(
),
,
由 得
,则
,
故。 ………………………………………… 6分
此时,直线斜率为
,
的直线方程为
。
即。
联立 消去
,整理得
。
设 ,
所以,
。 ……………………………9分
于是
。…… 11分
由于在椭圆的内部,故
令,
,则
。 …………… 12分
又,所以
。
综上,的取值范围为
。 …………………… 13分
知识点
扫码查看完整答案与解析