- 直线、圆及圆锥曲线的交汇问题
- 共263题
已知椭圆的左右焦点分别是
,直线
与椭圆
交于两点
且当
时,M是椭圆
的上顶点,且△
的周长为6.
(1)求椭圆 的方程;
(2)设椭圆的左顶点为A,直线
与直线:
分别相交于点
,问当
变化时,以线段
为直径的圆被
轴截得的弦长是否为定值?若是,求出这个定值,若不是,说明理由。
正确答案
见解析
解析
(1)当时,直线的倾斜角为
,
所以:…………3分
解得:,……5分
所以椭圆方程是:;……6分
(2)当时,直线
的方程为:
,此时,M,N点的坐标分别是
,又
点坐标是(-2,0),由图可以得到P,Q两点坐标分别是(4,3),(4,-3),以PQ为直径的圆过右焦点,被
轴截得的弦长为6,猜测当
变化时,以PQ为直径的圆恒过焦点
,被
轴截得的弦长为定值6,……………………8分
证明如下:设点M,N点的坐标分别是,则直线
的方程是:
,
所以点的坐标是
,同理,点
的坐标是
,…………………9分
由方程组得到:
,
所以:,…………………11分
从而:
所以:以为直径的圆一定过右焦点
,被
轴截得的弦长为定值6。……………13分
知识点
已知平面内一动点到椭圆
的右焦点
的距离与到直线
的距离相等。
(1)求动点的轨迹
的方程;
(2)过点(
)作倾斜角为
的直线与曲线
相交于
,
两点,若点
始终在以线段
为直径的圆内,求实数
的取值范围;
(3)过点(
)作直线与曲线
相交于
,
两点,问:是否存在一条垂直于
轴的直线与以线段
为直径的圆始终相切?若存在,求出所有
的值;若不存在,请说明理由﹒
正确答案
见解析
解析
(1)易知椭圆的右焦点坐标为。
由抛物线的定义,知P点的轨迹是以为焦点,直线
为准线的抛物线。
所以,动点P的轨迹C的方程为。 ……………………………………4分
(2)由题意知,直线AB的方程为。
代入,得
。
设,则
。
因为点始终在以线段
为直径的圆内,
为钝角。
又,
,
,
。
即,
。
因此,
。
综上,实数的取值范围是
。
(3)设过点的直线方程为
,代入
,得
,设
,则
,
。
于是。
的中点坐标为
又
。
设存在直线满足条件,则
。
化简,得。
所以,对任意的
恒成立,
所以
解得,
。
所以,当时,存在直线
与以线段
为直径的圆始终相切,…………13分
知识点
已知椭圆的左右焦点分别是
,直线
与椭圆
交于两点
且当
时,M是椭圆
的上顶点,且△
的周长为6.
(1)求椭圆 的方程;
(2)设椭圆的左顶点为A,直线
与直线:
分别相交于点
,问当
变化时,以线段
为直径的圆被
轴截得的弦长是否为定值?若是,求出这个定值,若不是,说明理由。
正确答案
见解析
解析
(1)当时,直线的倾斜角为
,所以:
…………3分
解得:,……5分 所以椭圆方程是:
;……6分
(2)当时,直线
的方程为:
,此时,M,N点的坐标分别是
,又
点坐标是(-2,0),由图可以得到P,Q两点坐标分别是(4,3),(4,-3),以PQ为直径的圆过右焦点,被
轴截得的弦长为6,猜测当
变化时,以PQ为直径的圆恒过焦点
,被
轴截得的弦长为定值6,……………………8分
证明如下:设点M,N点的坐标分别是,则直线
的方程是:
,
所以点的坐标是
,同理,点
的坐标是
,…………………9分
由方程组得到:
,
所以:,…………………11分
从而:
所以:以为直径的圆一定过右焦点
,被
轴截得的弦长为定值6。……………13分
知识点
如图,设椭圆:
(
)的左、右焦点分别为
,
,点
是其与
轴的一个交点,定点
(
,
),且
,
。
(1)求椭圆的标准方程;
(2)过点作直线
与椭圆
相交于不同的两点
,
(
,
与点
不重合),设直线
的斜率为
,直线
的斜率为
,证明:
为定值。
正确答案
见解析
解析
解析:
(1)解:设椭圆的半焦距为(
),由
(
,
)及
得,即
;由
得
,即
,所以
所以椭圆的标准方程为
(2)证明:若直线与
轴垂直,则
,
的坐标分别为(
,
),(
),
于是
若直线的斜率存在,则设斜率为
,
由(
,
)及
,
与点
不重合知
且
设,
,直线
的方程为
与椭圆的方程联立消去
得
得,
于是
综上得为定值2
知识点
已知,点B是
轴上的动点,过B作AB的垂线
交
轴于点Q,若
,
.
(1)求点P的轨迹方程;
(2)是否存在定直线,以PM为直径的圆与直线
的相交弦长为定值,若存在,求出定直线方程;若不存在,请说明理由。
正确答案
(1)y2=x(2)x=
解析
(1)设B(0,t),设Q(m,0),t2=|m|,
m
0, m=-4t2,
Q(-4t2,0),设P(x,y),则
=(x-
,y),
=(-4t2-
,0),
2=(-
,2 t),
+
=2
。
(x-
,y)+ (-4t2-
,0)= (-
,2 t),
x=4t2,y=2 t,
y2=x,此即点P的轨迹方程; 6分。
(2)由(1),点P的轨迹方程是y2=x;设P(y2,y),M (4,0) ,则以PM为直径的圆的圆心即PM的中点T(
,
), 以PM为直径的圆与直线x=a的相交弦长:
L=2
=2=2
10分
若a为常数,则对于任意实数y,L为定值的条件是a-=0, 即a=
时,L=
存在定直线x=
,以PM为直径的圆与直线x=
的相交弦长为定值
。
知识点
已知为椭圆
的左右焦点,点
为其上一点,且有
(1)求椭圆的标准方程;
(2)过的直线
与椭圆
交于
两点,过
与
平行的直线
与椭圆
交于
两点,求四边形
的面积
的最大值。
正确答案
(1)(2)6
解析
解析:(1)设椭圆的标准方程为
由已知得
,
……………………2分
又点在椭圆上,
椭圆的标准方程为
……………………4分
(2)由题意可知,四边形为平行四边形
=4
设直线的方程为
,且
由得
……………………6分
=
+
=
=
==
…………………………8分
令,则
=
=
,……… 10分
又在
上单调递增
的最大值为
所以的最大值为6. ………………………………12分
知识点
已知椭圆的左右顶点分别为
点
在椭圆上,
是
关于原点的对称点,椭圆的右焦点
恰好是
的重心。
(1)求椭圆的标准方程;
(2)过椭圆左焦点且斜率为
的直线
交椭圆与
两点,若
,求
的值。
正确答案
见解析。
解析
(1),
的重心是
,由三角形重心的性质知:
,
∴椭圆E的方程为:
(2)设点,由
得直线CD的直线方程为
由方程组消去
,整理得
由已知得:,解得
知识点
已知椭圆的左、右焦点分别为
,若以
为圆心,
为半径作圆
,过椭圆上一点
作此圆的切线,切点为
,且
的最小值不小于
。
(1)证明:椭圆上的点到的最短距离为
;
(2)求椭圆的离心率的取值范围;
(3)设椭圆的短半轴长为,圆
与
轴的右交点为
,过点
作斜率为
的直线
与椭圆相交于
两点,若
,求直线
被圆
截得的弦长
的最大值。
正确答案
见解析
解析
解析:
(1)设椭圆上任一点的坐标为
,
点到右准线的距离为
,则由椭圆的第二定义知:
,
,又
,
当
时,
(4分)
(2)依题意设切线长
∴当且仅当取得最小值时
取得最小值,
,
(6分)
从而解得,故离心率
的取值范围是
(8分)
(3)依题意点的坐标为
,则直线的方程为
, 联立方程组
得,设
,则有
,
,代入直线方程得
,
,又
,
,
(11分)
,直线的方程为
,圆心
到直线
的距离
,由图象可知
,
,
,
,所以
(14分)
知识点
如图,已知抛物线:
和⊙
:
,过抛物线
上一点
作两条直线与⊙
相切于
、
两点,分别交抛物线为E、F两点,圆心点
到抛物线准线的距离为
。
(1)求抛物线的方程;
(2)当的角平分线垂直
轴时,求直线
的斜率;
(3)若直线在
轴上的截距为
,求
的最小值。
正确答案
(1)(2)
(3)-11
解析
解析:(1)∵点到抛物线准线的距离为
,
∴,即抛物线
的方程为
。----------------------------------------------2分
(2)法一:∵当的角平分线垂直
轴时,点
,∴
,
设,
,
∴, ∴
,
∴。
。---------------------------6分
法二:∵当的角平分线垂直
轴时,点
,∴
,可得
,
,∴直线
的方程为
,
联立方程组,得
,
∵ ∴
,
。
同理可得,
,∴
。---------------------------6分
(3)法一:设,∵
,∴
,
可得,直线的方程为
,
同理,直线的方程为
,
∴,
,
∴直线的方程为
, 令
,可得
,
∵关于
的函数在
单调递增, ∴
。------------------------------12分
法二:设点,
,
。
以为圆心,
为半径的圆方程为
,........................................................................................................................................ ①
⊙方程:
。....................................................... ②
①-②得:直线的方程为
。
当时,直线
在
轴上的截距
,
∵关于
的函数在
单调递增, ∴
。 ------------------------12分
知识点
已知椭圆的方程为
,其中
.
(1)求椭圆形状最圆时的方程;
(2)若椭圆最圆时任意两条互相垂直的切线相交于点
,证明:点
在一个定圆上.
正确答案
见解析。
解析
(1)根据已知条件有,且
,故椭圆
的长轴在
轴上.
,当且仅当
时取等号.
由于椭圆的离心率
最小时其形状最圆,故最圆的椭圆方程为
.
(2)设交点,过交点
的直线
与椭圆
相切.
(i)当斜率不存在或等于零时,易得点的坐标为
.
(ii)当斜率存在且非零时,则设斜率为
,则直线
:
,
与椭圆方程联立消,得:
.
由相切,,
化简整理得. ①
因过椭圆外一点有两条直线与椭圆相切,由已知两切线垂直,故,而
为方程①的两根,
故,整理得:
.
又也满足上式,
故点的轨迹方程为
,即
点在定圆
上.
知识点
扫码查看完整答案与解析