热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 13 分

已知椭圆的左右焦点分别是,直线与椭圆交于两点且当时,M是椭圆的上顶点,且△的周长为6.

(1)求椭圆 的方程;

(2)设椭圆的左顶点为A,直线与直线:分别相交于点,问当变化时,以线段为直径的圆被轴截得的弦长是否为定值?若是,求出这个定值,若不是,说明理由。

正确答案

见解析

解析

(1)当时,直线的倾斜角为

所以:…………3分

解得:,……5分

所以椭圆方程是:;……6分

(2)当时,直线的方程为:,此时,M,N点的坐标分别是,又点坐标是(-2,0),由图可以得到P,Q两点坐标分别是(4,3),(4,-3),以PQ为直径的圆过右焦点,被轴截得的弦长为6,猜测当 变化时,以PQ为直径的圆恒过焦点,被轴截得的弦长为定值6,……………………8分

证明如下:设点M,N点的坐标分别是,则直线的方程是:

所以点的坐标是,同理,点的坐标是,…………………9分

由方程组得到:

所以:,…………………11分

从而:

所以:以为直径的圆一定过右焦点,被轴截得的弦长为定值6。……………13分

知识点

椭圆的定义及标准方程圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 14 分

已知平面内一动点到椭圆的右焦点的距离与到直线的距离相等。

(1)求动点的轨迹的方程;

(2)过点)作倾斜角为的直线与曲线相交于两点,若点始终在以线段为直径的圆内,求实数的取值范围;

(3)过点)作直线与曲线相交于两点,问:是否存在一条垂直于轴的直线与以线段为直径的圆始终相切?若存在,求出所有的值;若不存在,请说明理由﹒

正确答案

见解析

解析

(1)易知椭圆的右焦点坐标为

由抛物线的定义,知P点的轨迹是以为焦点,直线为准线的抛物线。

所以,动点P的轨迹C的方程为。  ……………………………………4分

(2)由题意知,直线AB的方程为

代入,得

,则

因为点始终在以线段为直径的圆内,

为钝角。

因此

综上,实数的取值范围是

(3)设过点的直线方程为,代入,得

,设,则

于是

的中点坐标为

设存在直线满足条件,则

化简,得

所以,对任意的恒成立,

所以

解得

所以,当时,存在直线与以线段为直径的圆始终相切,…………13分

知识点

直接法求轨迹方程圆锥曲线中的范围、最值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 14 分

已知椭圆的左右焦点分别是,直线与椭圆交于两点且当时,M是椭圆的上顶点,且△的周长为6.

(1)求椭圆 的方程;

(2)设椭圆的左顶点为A,直线与直线:分别相交于点,问当变化时,以线段为直径的圆被轴截得的弦长是否为定值?若是,求出这个定值,若不是,说明理由。

正确答案

见解析

解析

(1)当时,直线的倾斜角为,所以:…………3分

解得:,……5分      所以椭圆方程是:;……6分

(2)当时,直线的方程为:,此时,M,N点的坐标分别是,又点坐标是(-2,0),由图可以得到P,Q两点坐标分别是(4,3),(4,-3),以PQ为直径的圆过右焦点,被轴截得的弦长为6,猜测当 变化时,以PQ为直径的圆恒过焦点,被轴截得的弦长为定值6,……………………8分

证明如下:设点M,N点的坐标分别是,则直线的方程是:

所以点的坐标是,同理,点的坐标是,…………………9分

由方程组得到:

所以:,…………………11分

从而:

所以:以为直径的圆一定过右焦点,被轴截得的弦长为定值6。……………13分

知识点

椭圆的定义及标准方程直线与椭圆的位置关系圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

如图,设椭圆)的左、右焦点分别为,点是其与轴的一个交点,定点),且

(1)求椭圆的标准方程;

(2)过点作直线与椭圆相交于不同的两点与点不重合),设直线的斜率为,直线的斜率为,证明:为定值。

正确答案

见解析

解析

解析:

(1)解:设椭圆的半焦距为),由)及

,即;由,即,所以

所以椭圆的标准方程为

(2)证明:若直线轴垂直,则的坐标分别为(),(),

于是

  若直线的斜率存在,则设斜率为

)及与点不重合知  

,直线的方程为

与椭圆的方程联立消去

   

  于是

综上得为定值2   

知识点

向量在几何中的应用椭圆的定义及标准方程圆锥曲线的定点、定值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

已知,点B是轴上的动点,过B作AB的垂线轴于点Q,若,.

(1)求点P的轨迹方程;

(2)是否存在定直线,以PM为直径的圆与直线的相交弦长为定值,若存在,求出定直线方程;若不存在,请说明理由。

正确答案

(1)y2=x(2)x=

解析

(1)设B(0,t),设Q(m,0),t2=|m|,m0, m=-4t2

 Q(-4t2,0),设P(x,y),则=(x-,y),=(-4t2-,0),

2=(-,2 t), +=2

(x-,y)+ (-4t2-,0)= (-,2 t),

 x=4t2,y=2 t, y2=x,此即点P的轨迹方程;       6分。

(2)由(1),点P的轨迹方程是y2=x;设P(y2,y),M (4,0) ,则以PM为直径的圆的圆心即PM的中点T(), 以PM为直径的圆与直线x=a的相交弦长:

L=2

=2=2      10分

若a为常数,则对于任意实数y,L为定值的条件是a-=0, 即a=时,L=

存在定直线x=,以PM为直径的圆与直线x=的相交弦长为定值

知识点

相关点法求轨迹方程圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

已知为椭圆的左右焦点,点为其上一点,且有

(1)求椭圆的标准方程;

(2)过的直线与椭圆交于两点,过平行的直线与椭圆交于两点,求四边形的面积的最大值。

正确答案

(1)(2)6

解析

解析:(1)设椭圆的标准方程为

由已知       ……………………2分

又点在椭圆上, 

椭圆的标准方程为                  ……………………4分

(2)由题意可知,四边形为平行四边形  =4

设直线的方程为,且

          ……………………6分

=+==

== …………………………8分

,则   ==,……… 10分

上单调递增

  的最大值为

所以的最大值为6.            ………………………………12分

知识点

椭圆的定义及标准方程圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 13 分

已知椭圆的左右顶点分别为在椭圆上,关于原点的对称点,椭圆的右焦点恰好是的重心。

(1)求椭圆的标准方程;

(2)过椭圆左焦点且斜率为的直线交椭圆与两点,若,求的值。

正确答案

见解析。

解析

(1)

的重心是,由三角形重心的性质知:

∴椭圆E的方程为:

(2)设点,由得直线CD的直线方程为

由方程组消去,整理得

       

由已知得:,解得

知识点

平面向量数量积的运算向量在几何中的应用椭圆的定义及标准方程直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 14 分

已知椭圆的左、右焦点分别为,若以为圆心,为半径作圆,过椭圆上一点作此圆的切线,切点为,且的最小值不小于

(1)证明:椭圆上的点到的最短距离为

(2)求椭圆的离心率的取值范围;

(3)设椭圆的短半轴长为,圆轴的右交点为,过点作斜率为的直线与椭圆相交于两点,若,求直线被圆截得的弦长的最大值。

正确答案

见解析

解析

解析:

(1)设椭圆上任一点的坐标为点到右准线的距离为,则由椭圆的第二定义知:,又时,

(4分)

(2)依题意设切线长

∴当且仅当取得最小值时取得最小值,

(6分)

从而解得,故离心率的取值范围是(8分)

(3)依题意点的坐标为,则直线的方程为, 联立方程组

,设,则有,代入直线方程得

,又

(11分)

,直线的方程为,圆心到直线的距离,由图象可知

,所以(14分)

知识点

椭圆的几何性质圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

如图,已知抛物线和⊙,过抛物线上一点作两条直线与⊙相切于两点,分别交抛物线为E、F两点,圆心到抛物线准线的距离为

(1)求抛物线的方程;

(2)当的角平分线垂直轴时,求直线的斜率;

(3)若直线轴上的截距为,求的最小值。

正确答案

(1)(2)(3)-11

解析

解析:(1)∵点到抛物线准线的距离为

,即抛物线的方程为  。----------------------------------------------2分

(2)法一:∵当的角平分线垂直轴时,点,∴

,   ∴ 

。    。---------------------------6分

法二:∵当的角平分线垂直轴时,点,∴,可得,∴直线的方程为

联立方程组,得

   ∴

同理可得,∴。---------------------------6分

(3)法一:设,∵,∴

可得,直线的方程为

同理,直线的方程为

∴直线的方程为,  令,可得

关于的函数在单调递增,   ∴。------------------------------12分

法二:设点

为圆心,为半径的圆方程为,........................................................................................................................................ ①

方程:。....................................................... ②

①-②得:直线的方程为

时,直线轴上的截距

关于的函数在单调递增,   ∴。 ------------------------12分

知识点

直线的倾斜角与斜率抛物线的标准方程和几何性质圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 13 分

已知椭圆的方程为,其中.

(1)求椭圆形状最圆时的方程;

(2)若椭圆最圆时任意两条互相垂直的切线相交于点,证明:点在一个定圆上.

正确答案

见解析。

解析

(1)根据已知条件有,且,故椭圆的长轴在轴上.

,当且仅当时取等号.

由于椭圆的离心率最小时其形状最圆,故最圆的椭圆方程为.

(2)设交点,过交点的直线与椭圆相切.

(i)当斜率不存在或等于零时,易得点的坐标为.   

(ii)当斜率存在且非零时,则设斜率为,则直线

与椭圆方程联立消,得:.

由相切,

化简整理得. ①

因过椭圆外一点有两条直线与椭圆相切,由已知两切线垂直,故,而为方程①的两根,

,整理得:.

也满足上式,

点的轨迹方程为,即点在定圆上.  

知识点

椭圆的定义及标准方程圆锥曲线的定点、定值问题直线、圆及圆锥曲线的交汇问题
百度题库 > 高考 > 理科数学 > 直线、圆及圆锥曲线的交汇问题

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题