- 直线、圆及圆锥曲线的交汇问题
- 共263题
已知椭圆抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点
从每条曲线上取两个点,将其坐标记录于下表中:
(1)求的标准方程;
(2)设斜率不为的动直线
与
有且只有一个公共点
且与
的准线相交于点
试探究:在坐标平面内是否存在定点
使得以
为直径的圆恒过点
若存在,求出点
的坐标;若不存在,请说明理由。
正确答案
见解析
解析
解析:(1)设的标准方程分别为:
和代入抛物线方程中得到的解相同,
…………………………2分,
且和
在椭圆上,代入椭圆方程得
故
的标准方程分别为
…………………………5分
(2)设直线的方程为
将其代入
消去
并化简整理得
与
相切,
…………………………7分,
设切点则
又直线
与
的准线
的交点
以
为直径的圆的方程为
…………………………10分,
化简并整理得恒成立,故
即存在定点
合题意。 …………………………12分
知识点
如图,设椭圆中心在坐标原点,是它的两个顶点,直线
与
相交于点
,与椭圆相交于
两点。
(1)若,求
的值。
(2)求四边形面积的最大值。
正确答案
见解析
解析
(1)依题可设得椭圆的方程为。
直线的方程分别为
设,其中
,且
满足方程
,故
由知
点在直线
上得
所以,化简得:
,解得
(2)解法1:根据点到直线的距离公式和①式知,点到
的距离分别为:
又,所以四边形
的面积为
当,即
时,上式取等号。所以
的最大值为
。
解法2:由题设,。
设,由①得
,故四边形
的面积为
当
时,上式取等号。所以
的最大值为
。
知识点
如图,已知直线与抛物线
和圆
都相切,
是抛物线
的焦点。
(1)求与
的值;
(2)设是
上的一动点,以
为切点作抛物线
的切线
,直线
交
轴于点
,以
,
为邻边作平行四边形
,证明:点
在一条定直线上;
(3)在(2)的条件下,记点所在的定直线为
,直线
与
轴交点为
,连接
交抛物线
于
,
两点,求△
的面积
的取值范围。
正确答案
见解析
解析
(1)由已知,圆的圆心为
,半径
.
由题设圆心到直线的距离
,即
,
解得,
.………………3分
设与抛物线的切点为
,又
,得
,
.
代入直线方程得:,
∴,
.………………5分
(2)由(1)知抛物线方程为
,焦点
.
设,由(1)知以
为切点的切线
的方程为
.
令,得切线
交y轴的B点坐标为
所以,
,
∴,
∴,即点
在定直线
上.……………8分
(3)设直线,代入
得,设
,
的横坐标分别为
,
则,
∴;
∵,
∴,即△
的面积S范围是
. ……………13分
知识点
如图,两条相交线段、
的四个端点都在椭圆
上,其中,直线
的方程为
,直线
的方程为
。
(1)若,
,求
的值;
(2)探究:是否存在常数,当
变化时,恒有
?
正确答案
见解析
解析
(1)由,
解得,
,
因为,所以
。
设,则
,
化简得,……5分
又,联立方程组,解得
,或
。
因为平分
,所以
不合,故
(2)设,
,由
,得
。
,
,
,
若存常数,当
变化时,恒有
,则由(1)知只可能
。
①当时,取
,
等价于
,
即,
即,
即,此式恒成立。
所以,存常数,当
变化时,恒有
,
②当时,取
,由对称性同理可知结论成立。
故,存常数,当
变化时,恒有
,
知识点
已知圆C1的方程为,定直线l的方程为
,动圆C与圆C1外切,且与直线l相切。
(1)求动圆圆心C的轨迹M的方程;
(2)斜率为k的直线l与轨迹M相切于第一象限的点P,过点P作直线l的垂线恰好经过点A(0,6),并交轨迹M于异于点P的点Q,记为轨迹M与直线PQ围成的封闭图形的面积,求
的值。
正确答案
见解析
解析
解(1)设动圆圆心C的坐标为,动圆半径为R,则
,且
可得 。
由于圆C1在直线l的上方,所以动圆C的圆心C应该在直线l的上方,所以有,从而得
,整理得
,即为动圆圆心C的轨迹M的方程,
(2)如图示,设点P的坐标为,则切线的斜率为
,可得直线PQ的斜率为
,所以直线PQ的方程为
,由于该直线经过点A(0,6),所以有
,得
,因为点P在第一象限,所以
,点P坐标为(4,2),直线PQ的方程为
,
把直线PQ的方程与轨迹M的方程联立得,解得
或4,可得点Q的坐标为
,所以
,
知识点
已知椭圆的一个焦点
与抛物线
的焦点重合,且截抛物线的准线所得弦长为
,倾斜角为
的 直线
过点
.
(1)求该椭圆的方程;
(2)设椭圆的另一个焦点为,问抛物线
上是否存在一点
,使得
与
关于直线
对称,若存在,求出点
的坐标,若不存在,说明理由。
正确答案
见解析
解析
解:(1)抛物线的焦点为
,准线方程为
,
∴ ①
又椭圆截抛物线的准线所得弦长为
,
∴ 得上交点为,∴
②
由①代入②得,解得
或
(舍去),
从而
∴ 该椭圆的方程为该椭圆的方程为
(2)∵ 倾斜角为的直线
过点
,
∴ 直线的方程为
,即
由(1)知椭圆的另一个焦点为,设
与
关于直线
对称,则得
,
解得,即
,
又满足
,故点
在抛物线上。所以抛物线
上存在一点
,使得
与
关于直线
对称。
知识点
20.已知椭圆C:+=1(a>b>0)的离心率为,短轴一个端点到右焦点的距离为。
(1)求椭圆C的方程;
(2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
15.已知双曲线的右焦点为F,O为坐标原点,以OF为直径的圆与双曲线的一条渐近线相交于O,A两点,若△AOF的面积为b2,则双曲线的离心率等于_________。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20.已知椭圆和圆
,过椭圆上一点
引圆
的两条切线,切点分别为
.
(1)(ⅰ)若圆过椭圆的两个焦点,求椭圆的离心率
的值;
(ⅱ)若椭圆上存在点,使得
,求椭圆离心率
的取值范围;
(2)设直线与
轴、
轴分别交于点
,问当点P在椭圆上运动时,
是否为定值?请证明你的结论.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20.已知椭圆C:的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线
与以椭圆C的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设为椭圆上一点,若过点
的直线
与椭圆
相交于不同的两点
和
,且满足
(O为坐标原点),求实数
的取值范围.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析