热门试卷

X 查看更多试卷
1
题型: 单选题
|
单选题 · 5 分

1.函数f(x)=log2(x2-2x+m)的最小值为2,则m的值为(   )

A3

B4

C5

D6

正确答案

C

解析

因为

所以m-1=4,m=5.

知识点

椭圆的定义及标准方程
1
题型:填空题
|
填空题 · 5 分

11.椭圆的离心率为                .

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程
1
题型:简答题
|
简答题 · 12 分

21.如图,焦距为2的椭圆E的两个顶点分别为,且共线.

(Ⅰ)求椭圆E的标准方程;

(Ⅱ)若直线与椭圆E有两个不同的交点PQ,且原点O总在以PQ为直径的

圆的内部,求实  数m的取值范围.

正确答案

解:

(Ⅰ)设椭圆E的标准方程为,由已知得

,∵共线,   ∴,又

, ∴椭圆E的标准方程为

(Ⅱ)设,把直线方程代入椭圆方程

消去y,得,,

,     

(*)

∵原点O总在以PQ为直径的圆内,∴,即

,依题意且满足(*)

故实数m的取值范围是

解析

解析已在路上飞奔,马上就到!

知识点

平行向量与共线向量向量在几何中的应用椭圆的定义及标准方程圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

21.如图,椭圆C的焦点在x轴上,左、右顶点分别为A1A,上顶点为B.抛物线C1C2分别以A、B为焦点,其顶点均为坐标原点OC1C2相交于直线上一点P

(1)  求椭圆C及抛物线C1C2的方程;

(2)  若动直线l与直线OP垂直,且与椭圆C交于不同两点M、N已知点,求的最小值.

正确答案

(1) 由题意得Aa,0),B(0,

∴ 抛物线C1的方程可设为;抛物线C2的方程可设为

代入a = 4

∴ 椭圆方程为,抛物线C1,抛物线C2

(2)由题意可设直线l的方程为

消去y

Mx1y1),Nx2y2),则

∵ 

∴ 当时,其最小值为

解析

解析已在路上飞奔,马上就到!

知识点

平面向量数量积的运算椭圆的定义及标准方程抛物线的标准方程和几何性质圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型: 单选题
|
单选题 · 3 分

15.方程表示焦点在轴的椭圆,则实数的取值范围是

A

B

C

D

正确答案

D

解析

得:0<k<4。A选项不正确,B选项不正确,C选项不正确,所以选D选项。

考查方向

本题主要考查椭圆的标准方程

解题思路

1、把方程化为标准形式;

2、利用a>b判断。

易错点

本题易在判断a,b>0时发生错误。

知识点

椭圆的定义及标准方程
1
题型: 单选题
|
单选题 · 5 分

12.设分别是椭圆的左右焦点,若在其右准线上存在点,使为等腰三角形,则椭圆的离心率的取值范围是(  )

A

B

C

D

正确答案

C

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程
1
题型:简答题
|
简答题 · 16 分

18. 平面直角坐标系中,已知椭圆的离心率为,左、右焦点分别是,以为圆心以3为半径的圆与以为圆心以1为半径的圆相交,且交点在椭圆上.

(1)求椭圆的方程;

(2)过椭圆上一动点的直线,过F2x轴垂直的直线记为,右准线记为

①设直线与直线相交于点M,直线与直线相交于点N,证明恒为定值,并求此定值。

②若连接并延长与直线相交于点Q,椭圆的右顶点A,设直线PA的斜率为,直线QA的斜率为,求的取值范围.

正确答案

见解析

解析

(1)由题意知 ,则 ,又 可得 ,

所以椭圆C的标准方程为.

(2)①M  N

②点),点Q

==

∵点P在椭圆C上,    ∴

==

的取值范围是

考查方向

本题考查了椭圆方程的求法,离心率,圆方程等知识的运用,定值的求法,斜率的表示方法等。

解题思路

本题考查导数的性质,解题步骤如下:

(1)根据离心率和几何特点,求出椭圆方程

(2)表示M,N进而得

(3)表示,进而得的取值范围.

易错点

点M,N表示不当

知识点

椭圆的定义及标准方程圆锥曲线中的范围、最值问题圆锥曲线的定点、定值问题
1
题型:简答题
|
简答题 · 13 分

20.已知椭圆C的中心在坐标原点O,左焦点为F(-l,0),离心率为

(1)求椭圆C的标准方程;

(2)过点F的直线,与椭圆C交于A、B两点,设(其中1<入<3),求的取值范围。

正确答案

(1)

(2)

解析

本题属于圆锥曲线中的基本问题,题目的难度是逐渐由易到难,

(1)直接按照步骤来求

(2)要注意对参数的讨论.

(1)

(2)由(其中1<入<3)知,直线l不水平,

l:x=my-1,A(x1,y1),B(x2,y2)联立:

消x得:(2+m2)y2-2my-1=0,

①由(其中1<入<3)

得y1= -λy2……② 

令t=,则0<t<,

……③。

=x1x2+y1y2=(my1-1)(my2-1)+y1y2=(1+m2)y1y2-m(y1+y2)+1=

将③代入,得=

从而

考查方向

本题考查了椭圆的标准方程和直线与椭圆的位置关系、平面向量等知识点.

解题思路


易错点

1、第二问中的易丢对a的分类讨论。

知识点

椭圆的定义及标准方程椭圆的几何性质圆锥曲线中的范围、最值问题
1
题型:简答题
|
简答题 · 12 分

20.设椭圆)过两点,为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点,且?若存在,求出该圆的方程;若不存在,说明理由.

正确答案

(Ⅰ)

(Ⅱ)

解析

试题分析:本题是直线与圆锥曲线的常见题型,运算量较大。此类问题往往要用到韦达定理,设而不求等方法技巧,把几何关系转化为代数运算。

(Ⅰ)因为,所以解得,所以椭圆的方程为

(Ⅱ)若存在满足题意的定圆,设该定圆半径为,则直线与该定圆相切,由对称性及可知,此时直线方程为,其与椭圆交于,故,解得,下面说明定圆满足题意.

①由上述讨论可知,切线于椭圆交于两点,满足.由椭圆与圆均关于轴对称可知,切线也满足题意.

②当切线不与轴垂直时,设切线方程为,交

则圆心到切线的距离,即

得,

所以

,且

所以,

所以,

所以

综上所述,存在定圆,使得该圆的任意一条切线与椭圆恒有两个交点,且

考查方向

本题主要考查椭圆的标准方程和几何性质,直线与椭圆的交点,直线斜率等基础知识.考查运算能力.难度中等。

解题思路

本题主要考查椭圆的标准方程和几何性质,直线与椭圆的交点,直线斜率等基础知识,解题步骤如下:

(Ⅰ)把点的坐标代入,求出椭圆方程;

(Ⅱ)通过分析得出圆方程,然后对切线与X轴垂直与否,进行分类讨论,推理,得出答案。

易错点

(Ⅰ)得出定圆方程有点困难;

(Ⅱ)对切线与X轴垂直与否,不能进行分类说明。

知识点

圆的一般方程椭圆的定义及标准方程圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 12 分

20.已知点为坐标原点,椭圆C的离心率为,点在椭圆C上.直线过点,且与椭圆C交于两点.

(I)求椭圆C的方程;

(Ⅱ)椭圆C上是否存在一点,使得?若存在,求出此时直线的方程,若不存在,说明理由.

正确答案

(I)

(Ⅱ)存在直线的方程为

解析

(I)由题意得  解得.

所以椭圆的方程为

(Ⅱ)(1)当直线轴垂直时,点,直线的方程为 满足题意;

(2)当直线轴不垂直时,设直线,显然.

,将代入

由直线,过点,得

因此

,得满足

所以直线的方程为

综上,椭圆C上存在点,使得成立,此时直线的方程为

 .

考查方向

本题主要考察椭圆的定义,以及直线与椭圆的综合问题,题目难度中等,计算量较大,是高考热点问题。圆锥曲线在高考中常常考察椭圆中的弦长、三角形面积的最值问题,以及定值和定点问题,或者求某一参数的取值范围,题目计算量较大,需要悉心计算。

解题思路

第一问直接根据离心率得到之间的关系,再根据过点列出方程组,解出

第二问设直线方程,别忘了考虑斜率不存在的情况,然后根据得到P点坐标,然后把P点坐标代入椭圆方程,得到关于的方程,解出即可。

易错点

1、在第二问设斜率的时候没有考虑斜率不存在的情况;

2、在第二问中计算出错

知识点

向量在几何中的应用直线的一般式方程椭圆的定义及标准方程圆锥曲线中的探索性问题
下一知识点 : 椭圆的几何性质
百度题库 > 高考 > 理科数学 > 椭圆的定义及标准方程

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题