- 椭圆的定义及标准方程
- 共573题
请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。
正确答案
测试
如图,设P是圆上的动点,点D是P在
轴上投影,M为PD上一点,且
。
(1)当P在圆上运动时,求点M的轨迹C的方程;
(2)求过点(3,0)且斜率为的直线被C所截线段的长度。
正确答案
(1) (2)
解析
(1)设点M的坐标是,P的坐标是
,
因为点D是P在轴上投影,
M为PD上一点,且,所以
,且
,
∵P在圆上,∴
,整理得
,
即C的方程是。
(2)过点(3,0)且斜率为的直线方程是
,
设此直线与C的交点为,
,
将直线方程代入C的方程
得:
,化简得
,∴
,
,
所以线段AB的长度是
,即所截线段的长度是
。
知识点
若抛物线的焦点与椭圆
的右焦点重合,则该抛物线的准线方程为 .
正确答案
解析
椭圆右焦点为,即抛物线焦点,所以准线方程
知识点
已知椭圆,过点
作圆
的切线
交椭圆
于
,
两点。
(1)求椭圆的焦点坐标和离心率;
(2)将表示为
的函数,并求
的最大值。
正确答案
(1)离心率为
(2)|AB|的最大值为2.
解析
(1)由已知得∴
∴椭圆G的焦点坐标为,离心率为
(2)由题意知,.
当时,切线l的方程
,点A、B的坐标分别为
此时
当m=-1时,同理可得
当时,设切线l的方程为
由
设A、B两点的坐标分别为,则
又由l与圆
所以
由于当时,
所以.
因为
且当时,|AB|=2,所以|AB|的最大值为2.
知识点
如图,四棱锥中,
为矩形,平面
平面
.
(1)求证:
(2)若问
为何值时,四棱锥
的体积最大?并求此时平面
与平面
夹角的余弦值。
正确答案
见解析。
解析
(1)∵在四棱锥P﹣ABCD中,ABCD为矩形,∴AB⊥AD,
又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
∴AB⊥面PAD,∴AB⊥PD。
(2)过P做PO⊥AD,∴PO⊥平面ABCD,
作OM⊥BC,连接PM
∴PM⊥BC,
∵∠BPC=90°,PB=,PC=2,
∴BC=,PM=
=
,BM=
,
设AB=x,∴OM=x∴PO=,
∴VP﹣ABCD=×x×
×
=
当,即x=
,VP﹣ABCD=
,
建立空间直角坐标系O﹣AMP,如图所示,
则P(0,0,),D(﹣
,0,0),C(﹣
,
,0),M(0,
,0),B(
,
,0)
面PBC的法向量为=(0,1,1),面DPC的法向量为
=(1,0,﹣2)
∴cosθ==
=﹣
。
知识点
扫码查看完整答案与解析