热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 13 分

如图,在正方形中,为坐标原点,点的坐标为,点的坐标为,分别将线段十等分,分点分别记为,连结,过轴的垂线与交于点

(1)求证:点都在同一条抛物线上,并求该抛物线的方程;

(2)过点做直线与抛物线交于不同的两点,若的面积比为,求直线的方程。

正确答案

(1); (2)

解析

(1)依题意,过且与x轴垂直的直线方程为

直线的方程为

坐标为,由得:,即

都在同一条抛物线上,且抛物线方程为

(2)依题意:直线的斜率存在,设直线的方程为

此时,直线与抛物线恒有两个不同的交点

设:,则

分别带入,解得

直线的方程为,即

知识点

抛物线的标准方程和几何性质直线与椭圆的位置关系
1
题型:简答题
|
简答题 · 15 分

如图,设椭圆C:动直线与椭圆C只有一个公共点P,且点P在第一象限.

(1) 已知直线的斜率为,用表示点P的坐标;

(2) 若过原点的直线垂直,证明:点到直线的距离的最大值为.

正确答案

见解析

解析

(1)方法1:设直线l的方程为 ,由 ,消去y得

由于直线l与椭圆C只有一个公共点P,故△=0,即,解得点P的坐标为

又点P在第一象限,故点P的坐标为

方法2:作变换 ,则椭圆C:变为圆 :

切点 变为点 ,切线  变为 。

在圆 中设直线 的方程为 ) ,

 解得

 ,由于 ,

所以 ,得 ,

 代入得 即

利用逆变换代入即得:

(2)由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离

整理得:

因为,所以

当且仅当 时等号成立。

所以,点P到直线 的距离的最大值为

知识点

直线与椭圆的位置关系直线、圆及圆锥曲线的交汇问题
1
题型: 单选题
|
单选题 · 5 分

已知椭圆过右焦点F且斜率为k(k>0)的直线于C相交于A、B两点,若则k=(  )

A1

B

C

D2

正确答案

B

解析

知识点

向量在几何中的应用椭圆的几何性质直线与椭圆的位置关系
1
题型:简答题
|
简答题 · 14 分

已知椭圆的四个顶点恰好是一边长为2,一内角为的菱形的四个顶点。

(1)求椭圆的方程;

(2)直线与椭圆交于两点,且线段的垂直平分线经过点,求为原点)面积的最大值。

正确答案

(1)

(2)

解析

(1)因为椭圆的四个顶点恰好是一边长为2,

一内角为 的菱形的四个顶点,

所以,椭圆的方程为             …………………4分

(2)设因为的垂直平分线通过点, 显然直线有斜率,

当直线的斜率为时,则的垂直平分线为轴,则

所以

因为

所以,当且仅当时,取得最大值为  ………………6分

当直线的斜率不为时,则设的方程为

所以,代入得到

,             即

方程有两个不同的解

           …………………9分

所以,又,化简得到    

代入,得到              …………………10分

又原点到直线的距离为

所以

化简得到         …………………12分

因为,所以当时,即时,取得最大值

综上,面积的最大值为                   …………………14分

知识点

椭圆的定义及标准方程直线与椭圆的位置关系圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 14 分

已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点.

直线交椭圆于两不同的点.

(1)求椭圆的方程;

(2)若直线不过点,求证:直线轴围成等腰三角形.

正确答案

见解析。

解析

知识点

椭圆的定义及标准方程直线与椭圆的位置关系直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 13 分

已知椭圆()过点,其左、右焦点分别为,且

(1)求椭圆的方程;

(2)若是直线上的两个动点,且,则以为直径的圆是否过定点?请说明理由。

正确答案

见解析

解析

(1)设点的坐标分别为

,可得,    …………………2分

所以,…………………4分

所以椭圆的方程为,          ……………………………6分

(2)设的坐标分别为,则

,可得,即,  …………………8分

又圆的圆心为半径为

故圆的方程为

也就是,                 ……………………11分

,可得或2,

故圆必过定点,              ……………………13分

(另法:(1)中也可以直接将点坐标代入椭圆方程来进行求解;(2)中可利用圆C直径的两端点直接写出圆的方程)

知识点

椭圆的定义及标准方程直线与椭圆的位置关系圆锥曲线的定点、定值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 14 分

已知椭圆的右焦点为,短轴的端点分别为,且

.

(1)求椭圆的方程;

(2)过点且斜率为的直线交椭圆于两点,弦的垂直平分线与轴相交于点.设弦的中点为,试求的取值范围。

正确答案

(1)

(2)

解析

(1)依题意不妨设,则.

,得.又因为

解得.

所以椭圆的方程为.  ……………4分

(2)依题直线的方程为.

.

,则.   …………6分

所以弦的中点为.  ……………7分

所以

.     ……………9分

直线的方程为

,得,则

所以.   …………11分

所以.……………12分

又因为,所以.

所以.

所以的取值范围是. ……………………14分

知识点

椭圆的定义及标准方程直线与椭圆的位置关系圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型:填空题
|
填空题 · 5 分

有一个半径为的圆,现在将一枚半径为的硬币向圆投去,如果不考虑硬币完全落在圆外的情况,则硬币完全落入圆内的概率为             。

正确答案

解析

知识点

直线与椭圆的位置关系
1
题型: 单选题
|
单选题 · 5 分

将函数的图象向右平移个单位,再向上平移1个单位,所得函数图象对应的解析式为                                                                                                                                            (    )

A

B

C

D

正确答案

C

解析

略。

知识点

直线与椭圆的位置关系
1
题型:简答题
|
简答题 · 14 分

已知:椭圆),过点的直线倾斜角为,原点到该直线的距离为

(1)求椭圆的方程;

(2)斜率大于零的直线过与椭圆交于两点,若,求直线的方程;

(3)是否存在实数,直线交椭圆于两点,以为直径的圆过点?若存在,求出的值;若不存在,请说明理由。

正确答案

见解析

解析

(1)由 ,得

所以椭圆方程是:-----------------4分

(2)设EF:)代入,得

,由,得

--------------6分

(舍去),(没舍去扣1分)

直线的方程为:--------------------9分

(3)将代入,得(*)

,PQ为直径的圆过,则,即,又,得

解得,此时(*)方程

存在,满足题设条件。-----------------14分

知识点

椭圆的定义及标准方程直线与椭圆的位置关系圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 13 分

设P是圆x2+y2=4上的任意一点,过P作x轴的垂线段PD,D为垂足, M是线段PD上的点,且满足|DM|=m|PD|(0<m<1),当点P在圆上运动时,记M的轨迹为曲线C.

(1)求曲线C的方程;

(2)过曲线C的左焦点F作斜率为的直线l交曲线C于A、B两点,点Q满足,是否存在实数m,使得点Q在曲线C上,若存在,求出m的值,若不存在,请说明理由。

正确答案

见解析

解析

(1)如图设M(x,y)、P(x0,y0),则由|DM|=m|PD|(0<m<1)得

x= x0,|y|=m| y0|,即

,∴即为曲线C的方程。………6′

(2)设,则

得:………8′

设A(x1,y1)、B(x2,y2).

.

,………9′

即Q点坐标为,将Q点代入,得.

∴存在当时,Q点在曲线C上。………13′

知识点

向量在几何中的应用直线与椭圆的位置关系相关点法求轨迹方程圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 14 分

已知椭圆的左右焦点分别是,直线与椭圆交于两点且当时,M是椭圆的上顶点,且△的周长为6.

(1)求椭圆 的方程;

(2)设椭圆的左顶点为A,直线与直线:分别相交于点,问当变化时,以线段为直径的圆被轴截得的弦长是否为定值?若是,求出这个定值,若不是,说明理由。

正确答案

见解析

解析

(1)当时,直线的倾斜角为,所以:…………3分

解得:,……5分      所以椭圆方程是:;……6分

(2)当时,直线的方程为:,此时,M,N点的坐标分别是,又点坐标是(-2,0),由图可以得到P,Q两点坐标分别是(4,3),(4,-3),以PQ为直径的圆过右焦点,被轴截得的弦长为6,猜测当 变化时,以PQ为直径的圆恒过焦点,被轴截得的弦长为定值6,……………………8分

证明如下:设点M,N点的坐标分别是,则直线的方程是:

所以点的坐标是,同理,点的坐标是,…………………9分

由方程组得到:

所以:,…………………11分

从而:

所以:以为直径的圆一定过右焦点,被轴截得的弦长为定值6。……………13分

知识点

椭圆的定义及标准方程直线与椭圆的位置关系圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:填空题
|
填空题 · 5 分

11.执行如图中的程序框,如果输入的t∈[﹣1,3],则输出的S属于区间  .

正确答案

[﹣3,4]

解析

知识点

直线与椭圆的位置关系
1
题型:简答题
|
简答题 · 14 分

椭圆的左右焦点分别为,上顶点为,已知椭圆过点,且

(1)求椭圆的方程;

(2)若椭圆上两点关于点对称,求

正确答案

见解析

解析

(1)因为椭圆过点,所以,解得 

又以为直径的圆恰好过右焦点,所以

,所以

,所以     

故椭圆的方程是。           

(2)法一:设点的坐标分别为

,且   

得:

所以所在直线的方程为          

代入

 

法二:设点的坐标分别为

两等式相减得                      

代入

知识点

椭圆的定义及标准方程直线与椭圆的位置关系
1
题型:简答题
|
简答题 · 7 分

若圆在矩阵对应的变换下变成椭圆.

(1)求a,b的值;

(2)判断矩阵A是否可逆,如果可逆,求矩阵A的逆矩阵A-1,如不可逆,说明理由.

正确答案

见解析

解析

(1)设点为圆C:上任意一点,经过矩阵A变换后对应点为,

,所以

因为点在椭圆:上,所以,  ………………2分

又圆方程为,故,即,又,,所以,.  ……4分

(2),因为,所以矩阵A可逆,………………5分

所以   ………………………………7分

知识点

直线与椭圆的位置关系
下一知识点 : 计数原理
百度题库 > 高考 > 理科数学 > 圆锥曲线与方程

扫码查看完整答案与解析

  • 上一题
  • 1/15
  • 下一题