热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 10 分

选修4—1;几何证明选讲.

如图,AB是⊙O的直径,CF是⊙O上的两点,OCAB,过点F作⊙O的切线FDAB的延长线于点D.连接CFAB于点E

30.求证:DE2=DBDA

31.若DB=2,DF=4,试求CE的长.

第(1)小题正确答案及相关解析

正确答案

见解析

解析

证明:连接OF.因为DF切⊙O于F,所以∠OFD=90°.所以∠OFC+∠CFD=90°.因为OC=OF,所以∠OCF=∠OFC.因为CO⊥AB于O,所以∠OCF+∠CEO=90°.

所以∠CFD=∠CEO=∠DEF,所以DF=DE.因为DF是⊙O的切线,所以DF2=DB•DA.

所以DE2=DB•DA.

考查方向

相似三角形、与圆有关的计算、与圆有关的比例线段

解题思路

利用辅助线,做出相似三角形,根据相似求出相关线段的长

易错点

辅助线,三角形相似条件找不准

第(2)小题正确答案及相关解析

正确答案

见解析

解析

DF2=DB•DA,DB=2,DF=4.DA= 8,   从而AB=6,  则.又由30题可知,DE=DF=4, BE=2,OE=1.从而 在中,

考查方向

相似三角形、与圆有关的计算、与圆有关的比例线段

解题思路

利用辅助线,做出相似三角形,根据相似求出相关线段的长

易错点

辅助线,三角形相似条件找不准

1
题型:填空题
|
填空题 · 20 分

请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。

正确答案

测试

1
题型:简答题
|
简答题 · 12 分

如图,的角平分线AD的延长线交它的外接圆于点E

(1)证明:

(2)若的面积,求的大小。

正确答案

见解析。

解析

(1)由已知条件,可得

因为是同弧上的圆周角,所以

故△ABE∽△ADC.

(2)因为△ABE∽△ADC,所以,即AB·AC=AD·AE.

又S=AB·ACsin,且S=AD·AE,故AB·ACsin= AD·AE.

则sin=1,又为三角形内角,所以=90°.

知识点

圆周角定理与圆有关的比例线段
1
题型:填空题
|
填空题 · 5 分

如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,则BC的长为       。

正确答案

解析

知识点

圆周角定理圆的切线的性质定理的证明
下一知识点 : 圆的切线的判定定理的证明
百度题库 > 高考 > 理科数学 > 圆周角定理

扫码查看完整答案与解析

  • 上一题
  • 1/4
  • 下一题