热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 10 分

22. 【选修4-1:几何证明选讲】

如图,已知线段AC为⊙O 的直径,P为⊙O的切线,切点为A,B为⊙O上一点,且BC∥PO.

( I )求证:PB为⊙O的切线;

(Ⅱ)若⊙O的半径为1,PA =3,求BC的长。

正确答案

(1)证明略;(2)

解析

试题分析:本题属于平面几何问题,题目难度较低,解题时要注意深入分析已知条件和特征结论,善于将各已知条件联系起来考虑,寻找合理的解题思路。

(1)连接,,

,

,

.        得证

(2)连接为直角三角形

,

解得

考查方向

本题考查了圆的切线的性质,圆心角的性质以及三角形中全等和相似关系,意在考查考生处理几何问题的能力。

解题思路

本题考查三角形与圆的相关知识,解题步骤如下:

1、通过相应的条件和定理建立起有关角或边之间的关系式,如全等关系。

2、灵活三角形相似得到所需结论。

易错点

1、未想到连接OB、AB而无法下手;

2、第二问中由相似得到合适结论出错。

知识点

圆的切线的判定定理的证明与圆有关的比例线段
1
题型:简答题
|
简答题 · 10 分

22. 如图,在直角中,边上异于的一点,以为直径作,分别交于点


(Ⅰ)证明:四点共圆;
(Ⅱ)若中点,且,求的长.

正确答案

(Ⅰ)略

(Ⅱ)

解析

试题分析:本题是有关直线与圆的问题,难度不大。在解题中注意结合切线的性质和勾股定理等知识进行解决。

(Ⅰ)

连结,则

因为为直径,所以

因为,所以

所以

所以四点共圆.

(Ⅱ)由已知的切线,所以,故

所以

因为中点,所以

因为四点共圆,所以

所以

考查方向

本题主要考查圆的基本性质、圆周角定理、四点共圆等基础知识,考查推理论证能力.难度较小.

解题思路

本题主要考查圆的基本性质、圆周角定理等基础知识。解题步骤如下:

(Ⅰ)利用四点共圆的判定定理,证明四点共圆;

(Ⅱ)利用切线性质和勾股定理及第一问的结论,求出的长。

易错点

第二问计算中,不易想到利用第一问四点共圆的性质解决。

知识点

圆的切线的判定定理的证明圆的切线的性质定理的证明与圆有关的比例线段
1
题型:填空题
|
填空题 · 5 分

如图, 切于点,交弦的延长线于点,  过点作圆的切线交于点. 若, 则弦的长为_______.

正确答案

解析

知识点

圆的切线的判定定理的证明
1
题型:简答题
|
简答题 · 10 分

AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC。

正确答案

解析

(方法一)证明:连结OD,则:OD⊥DC,

又OA=OD,DA=DC,所以∠DAO=∠ODA=∠DCO,

∠DOC=∠DAO+∠ODA=2∠DCO,

所以∠DCO=300,∠DOC=600

所以OC=2OD,即OB=BC=OD=OA,所以AB=2BC。

(方法二)证明:连结OD、BD。

因为AB是圆O的直径,所以∠ADB=900,AB=2 OB。

因为DC 是圆O的切线,所以∠CDO=900

又因为DA=DC,所以∠DAC=∠DCA,

于是△ADB≌△CDO,从而AB=CO。

即2OB=OB+BC,得OB=BC。

故AB=2BC。

知识点

圆的切线的判定定理的证明弦切角
1
题型:简答题
|
简答题 · 10 分

22.选修4-1:几何证明选讲 

如图,是圆的直径,是弦,的平分线交圆于点,交的延长线于点于点

(Ⅰ)求证:是圆的切线;

(Ⅱ)若,求的值.

正确答案

见解析.

解析

试题分析:本题属于平面几何中的基本问题,题目的难度是容易题。

(Ⅰ)连接,可得,∴

,∴,又为半径,∴是圆的切线

(Ⅱ)过于点,连接,则有

,则,∴

可得,又由

可得      

考查方向

本题考查了平面几何的知识,主要涉及直线与圆的位置关系,三角形相似的考查.

解题思路

本题考查平面几何的知识,解题步骤如下:利用圆的相关定理证明;利用切割线定理和相交弦定理证明。

易错点

相关的定理容易混用。

知识点

圆的切线的判定定理的证明与圆有关的比例线段
下一知识点 : 圆的切线的性质定理的证明
百度题库 > 高考 > 理科数学 > 圆的切线的判定定理的证明

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题