- 数列与函数的综合
- 共73题
已知函数,
24.证明:当;
25.证明:当时,存在
,使得对
26.确定k的所以可能取值,使得存在,对任意的
恒有
.
正确答案
(Ⅰ)详见解析
解析
解法一:(1)令则有
当
,所以
在
上单调递减;
故当时,
即当
时,
.
考查方向
解题思路
求导,然后分类讨论求单调性
易错点
导数和函数的关系掌握不牢,不会利用导数判断函数的单调性
正确答案
(Ⅱ)详见解析
解析
(2)令
则有
当
,所以
在
上单调递增,
故对任意正实数均满足题意.
当时,令
得
.
取对任意
恒有
,所以
在
上单调递增,
,即
.
综上,当时,总存在
,使得对任意的
恒有
.
考查方向
解题思路
先构造函数,然后求导判断单调区间,利用函数的单调性证明不等式。
易错点
不会构造函数,不会建立函数与导数之间的联系
正确答案
(Ⅲ) .
解析
(3)当时,由(1)知,对于
故
,
,
令,
则有
故当时,
,
在
上单调递增,故
,即
,所以满足题意的t不存在.
当时,由(2)知存在
,使得对任意的任意的
恒有
.
此时,
令,
则有
故当时,
,
在
上单调递增,
故,即
,记
与
中较小的为
,
则当,故满足题意的t不存在.
当,由(1)知,
,
令,则有
当时,
,所以
在
上单调递减,故
,
故当时,恒有
,此时,任意实数t满足题意.
综上,.
考查方向
解题思路
分K大于1.K小于1和K等于1把不等式的左边去掉绝对值,然后再进行分类讨论,可得答案。
易错点
计算能力弱,求导分类讨论或重或漏
已知,函数
记
为
的从小到大的第
(
)个极值点。
27.证明:数列{}是等比数列:
28.若对一切,
|
|恒成立,求
的取值范围。
正确答案
令,由
,得
,即
,
而对于,当
时,
若,即
,则
,
若,即
,则
,
因此,在区间与
上,
的符号总相反,于是当
时,
取得极值,所以
,此时,
,易知
,而
是常数,
故数列是首项为
,公比为
的等比数列。
解析
见答案
考查方向
解题思路
由题,令
,求出函数的极值点,根据等比数列定义即可得到结果;
易错点
字母太多,导致感觉混乱没有思路;
正确答案
解析
对一切恒成立,即
恒成立,也即
恒成立,
设,则
,令
得
,
当时,
所以
在区间
上单调递减;
当时,
所以
在区间
上单调递增;
因为,且当
时,
,所以
,
因此恒成立,当且仅当
,解得,
,
故实数a的取值范围是。
考查方向
解题思路
由题问题等价于恒成立问题,设
,然后运用导数的知识得到
,求得
,得到a的取值范围。
易错点
不会构造函数导致没有思路。
在等差数列中,
,其前
项和为
,等比数列
的各项均为正数,
,公比为
,且
,
.
17.求与
;
18.证明:.
正确答案
见解析
解析
设的公差为
,因为
所以
解得
或
(舍),
.故
,
.
考查方向
解题思路
第一问根据前N项和求通项公式,第二问用裂项相消的办法证明不等式
易错点
相关性质掌握不好;不会求数列的和
正确答案
见解析
解析
因为,所以
.故
. 因为
,所以
,于是
,
所以.即
.
考查方向
解题思路
第一问根据前N项和求通项公式,第二问用裂项相消的办法证明不等式
易错点
相关性质掌握不好;不会求数列的和
已知,函数
记
为
的从小到大的第
(
)个极值点。
27.证明:数列{}是等比数列:
28.若对一切,
|
|恒成立,求
的取值范围。
正确答案
令,由
,得
,即
,
而对于,当
时,
若,即
,则
,
若,即
,则
,
因此,在区间与
上,
的符号总相反,于是当
时,
取得极值,所以
,此时,
,易知
,而
是常数,
故数列是首项为
,公比为
的等比数列。
解析
见答案
考查方向
解题思路
由题,令
,求出函数的极值点,根据等比数列定义即可得到结果;
易错点
字母太多,导致感觉混乱没有思路;
正确答案
解析
对一切恒成立,即
恒成立,也即
恒成立,
设,则
,令
得
,
当时,
所以
在区间
上单调递减;
当时,
所以
在区间
上单调递增;
因为,且当
时,
,所以
,
因此恒成立,当且仅当
,解得,
,
故实数a的取值范围是。
考查方向
解题思路
由题问题等价于恒成立问题,设
,然后运用导数的知识得到
,求得
,得到a的取值范围。
易错点
不会构造函数导致没有思路。
已知数列{an}的前n项和为Sn,且对任意正整数n都有an=(-1)nSn +pn(p为常数,p≠0).
25.求p的值;
26.求数列{an}的通项公式;
27.设集合An={a2n-1,a2n},且bn,cnAn,记数列{nbn},{ncn}的前n项和分别为Pn,Qn.
若b1≠c1,求证:对任意n∈N*,Pn≠Qn.
正确答案
(1)p=-;
解析
解:(1)由a1=-S1+p,得a1=.
由a2=S2+p2,得a1=-p2,所以=-p2.
又p≠0,所以p=-.
考查方向
解题思路
本题考查数列求通项、求和,解题步骤如下:
(1)令n=1,n=2,可得p的方程,由p不为0,可得p的值;
易错点
错位相减法容易计算错误
正确答案
(1)p=-;(2)an=
解析
(2)由an=(-1)nSn+(-)n,得
①+②得an+an+1=(-1)n(-an+1)+
当n为奇数时,an+an+1=an+1,
所以an=-.
当n为偶数时,an+an+1=-an+1+,
所以an=-2an+1+
所以an=
考查方向
解题思路
本题考查数列求通项、求和,解题步骤如下:
(2)讨论n为偶数,或奇数,将n换为n-1,两式相加可得所求通项公式;
易错点
错位相减法容易计算错误
正确答案
见解析
解析
解:(3)An=,由于b1≠c1,则b1 与c1一正一负,
不妨设b1>0,则b1=,c1=-
.
则Pn=b1+2b2+3b3+…+nbn≥.
设S=,则
两式相减得×
<
.
所以S<,所以Pn≥
.
因为Qn= c1+2 c 2+3 c 3+…+n c n≤<0,
所以Pn≠Qn.
考查方向
解题思路
(3)求得An={a2n-1,a2n}= An=,讨论bn,cn的情况,运用错位相减法求和,即可得证
易错点
错位相减法容易计算错误
设(1-x)n=a0+a1x+a2x2+…+anxn,n∈N*,n≥2.
33.设n=11,求|a6|+|a7|+|a8|+|a9|+|a10|+|a11|的值;
34.设bk=ak+1(k∈N,k≤n-1),Sm=b0+b1+b2+…+bm(m∈N,m≤n-1),求|
|的值.
正确答案
(1)1024;
解析
解:(1)因为ak=(-1)k ,
当n=11时,|a6|+|a7|+|a8|+|a9|+|a10|+|a11|=
==1024.
考查方向
解题思路
本题考查二项式定理和性质,解题步骤如下:
(1)由二项式定理可得ak=(-1)k,再由二项式系数的性质,可得所求和为210;
=(-1)k-1 -(-1)k
,讨论m=0和1≤m≤n-1时,计算化简即可得到所求值.
易错点
二项式定理和性质不会熟练应用,容易计算错误
正确答案
(2)1
解析
(2)bk==
=
,
当1≤k≤n-1时,bk=(-1)k+1 = (-1)k+1
=(-1)k+1
+(-1)k+1
=(-1)k-1
-(-1)k
.
当m=0时,||=|
|=1.
当1≤m≤n-1时,
Sm=-1+ [(-1)k-1
,
所以||=1.综上,|
|=1.
考查方向
解题思路
本题考查二项式定理和性质,解题步骤如下:
(2)由组合数的阶乘公式可得bk= (-1)k+1 ,再由组合数的性质,可得当1≤k≤n-1时,bk
=(-1)k-1 -(-1)k
,讨论m=0和1≤m≤n-1时,计算化简即可得到所求值.
易错点
二项式定理和性质不会熟练应用,容易计算错误
已知表示不小于
的最小整数,例如
.
27.设,
,若
,求实数
的取值范围;
28.设,
在区间
上的值域为
,集合
中元素的个数为
,求证:
;
29.设(
),
,若对于
,都有
,求实数
的取值范围.
正确答案
(1),
解析
(1)因为在区间
上单调递增,
所以
进而的取值集合为
由已知可知在
上有解,因此,
考查方向
解题思路
根据函数的单调性求出的取值集合为
,进而可得到答案;
易错点
1.错将能成立问题转化为恒成立问题处理;2.对于题中出现的字母太多导致无法入手。
正确答案
(2)略;
解析
(2)当时,
,
所以的取值范围为区间
进而在
上函数值的个数为
个,
由于区间与
没有共同的元素,
所以中元素个数为
,得
因此,
考查方向
解题思路
先根据题意确定,然后带入求出极限;
易错点
1.错将能成立问题转化为恒成立问题处理;2.对于题中出现的字母太多导致无法入手。
正确答案
解析
(3)由于,
所以,并且当
时取等号,
进而时,
由题意对任意,
恒成立.
当,
恒成立,因为
,所以
当,
恒成立,因为
,所以
综上,实数的取值范围为
.
考查方向
解题思路
先求出 ,进而分类确定a的取值范围。
易错点
1.错将能成立问题转化为恒成立问题处理;2.对于题中出现的字母太多导致无法入手。
已知数列满足:
;
24.若,求
的值;
25.若,记
,数列
的前n项和为
,求证:
正确答案
见解析
解析
(1)
当时,解得
当时,无解 所以,
考查方向
解题思路
由数列满足的解析式,代入可得
.
易错点
主要易错于递推关系找不出,
正确答案
见解析
解析
(2)方法1: ①
②
①/②得,因为
方法2:因为,
又因为,所以
所以,所以
为单调递减数列
所以
,
所以:
考查方向
解题思路
这里可以从两个方面进行分析
①直接找出 的递推关系,进而得出通项公式,根据前n项和得出结论
②根据递推关系得出,且是递减数列,使用放缩法得出答案
易错点
主要易错于递推关系找不出,
15.对于函数给出定义:
设是函数
的导数,
是函数
的导数,若方程
有实数解
,则称点
为函数
的“拐点”.
某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数
,请你根据上面探究结果,计算
= .
正确答案
2016
解析
,
,
,得
.
,所以
的“拐点”即对称中心为
,所以
.
设,
则,
两式相加得.
考查方向
解题思路
1.先根据题中给出的信息求出的拐点;2.根据倒序相加法求出所求的式子的值。
易错点
1.不理解题中给出的新概念拐点是什么导致无法入手;2.不会根据对称中心转化为倒序相加求和。
知识点
设函数的导函数
,则数列
的前n项和是( )
正确答案
解析
由的导函数为
,结合
,解出
,所以
,进而
,所以其前
项和为
,故选A选项。
考查方向
解题思路
由及
求解出
与
的值,进而求出
,再由裂项求和法求出
的前
项和。
易错点
本题易在数列求和运算上出错。
知识点
扫码查看完整答案与解析