热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

已知的内角的对边分别为,且满足.

17.求的值;

18.若,求的面积.

第(1)小题正确答案及相关解析

正确答案

(1)

解析

(Ⅰ)∵

,∴.

考查方向

本题主要考查了三角恒等变换,正余弦定理,以及三角形面积。

解题思路

1)第一问中用两角和差公式和三角恒等变换化简得到,再由正弦定理可得

2)第二问中用倍余弦定理得到一个角,在用三角形面积公式求得面积。

易错点

1)第一问中想不到将角拆成

2)第二问中用余弦定理求角时容易将特殊角记错。

第(2)小题正确答案及相关解析

正确答案

(2).

解析

(Ⅱ)∵,∴

,∴.

的面积的.

考查方向

本题主要考查了三角恒等变换,正余弦定理,以及三角形面积。

解题思路

1)第一问中用两角和差公式和三角恒等变换化简得到,再由正弦定理可得

2)第二问中用倍余弦定理得到一个角,在用三角形面积公式求得面积。

易错点

1)第一问中想不到将角拆成

2)第二问中用余弦定理求角时容易将特殊角记错。

1
题型:填空题
|
填空题 · 5 分

13.设△的内角的对边分别,则________.

正确答案

解析

得,,由正弦定理得,,因为,所以.由余弦定理得,因为,所以

考查方向

本题主要考查正弦定理、余弦定理等知识,意在考查考生的运算求解能力和转化与化归的能力。

解题思路

1.先根据正弦定理将角间的关系转化为边;2.利用余弦定理求出c边即可。

易错点

不会将题中的条件转化为边;

知识点

三角形中的几何计算
1
题型:简答题
|
简答题 · 12 分

已知向量时,有函数

17.若的值;

18.在中,角的对边分别是,且满足求函数的取值范围.

第(1)小题正确答案及相关解析

正确答案

解析

,

因为所以.所以

考查方向

向量的坐标运算,三角函数的重要性质,三角恒等变换公式,解三角形。

解题思路

先通过向量垂直,得到三角关系,利用辅助角公式得到三角函数的解析式y=sin(x-) +=,再利用二倍角公式进行合理转化。

易错点

向量的坐标运算,三角函数的恒等变换

第(2)小题正确答案及相关解析

正确答案

(0,)

解析

 得.根据正弦定理可得:

, ∴在中 ∠ . ∴,

,    .故函数的取值范围为.

考查方向

向量的坐标运算,三角函数的重要性质,三角恒等变换公式,解三角形。

解题思路

将边用正弦定理进行转化,得到cosA=,所以A=,求出(B-)的取值范围,进而求出f(B)的范围。

易错点

向量的坐标运算,三角函数的恒等变换

1
题型:简答题
|
简答题 · 12 分

已知向量时,有函数

17.若的值;

18.在中,角的对边分别是,且满足求函数的取值范围.

第(1)小题正确答案及相关解析

正确答案

解析

,

因为所以.所以

考查方向

向量的坐标运算,三角函数的重要性质,三角恒等变换公式,解三角形。

解题思路

先通过向量垂直,得到三角关系,利用辅助角公式得到三角函数的解析式y=sin(x-) +=,再利用二倍角公式进行合理转化。

易错点

向量的坐标运算,三角函数的恒等变换

第(2)小题正确答案及相关解析

正确答案

(0,)

解析

 得.根据正弦定理可得:

, ∴在中 ∠ . ∴,

,    .故函数的取值范围为.

考查方向

向量的坐标运算,三角函数的重要性质,三角恒等变换公式,解三角形。

解题思路

将边用正弦定理进行转化,得到cosA=,所以A=,求出(B-)的取值范围,进而求出f(B)的范围。

易错点

向量的坐标运算,三角函数的恒等变换

1
题型: 单选题
|
单选题 · 5 分

5.的内角的对边分别为

,且,则(   )

A

B

C

D

正确答案

A

解析

由题意可知,由正弦定理可得,所以,所以C=60或120度

而A=30度,当C=60度时,B=90度,不符合b<c

当C=120度,B=30度,符合,所以选A

考查方向

正弦定理的性质和应用

解题思路

利用正弦定理求出角C的大小,然后求角B的大小

易错点

正弦定理公式记忆混淆

知识点

三角形中的几何计算
下一知识点 : 解三角形的实际应用
百度题库 > 高考 > 文科数学 > 三角形中的几何计算

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题