- 相似三角形的判定
- 共32题
请考生在以下3题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号
【选修4-1:几何证明选讲】(请回答28、29题)
如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,
【选修4—4:坐标系与参数方程】(请回答30、31题)
在直角坐标系x

在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=
【选修4—5:不等式选讲】(请回答32、33题)
已知函数
28.证明:直线AB与
29.点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.
30.说明C1是哪一种曲线,并将C1的方程化为极坐标方程;
31.直线C3的极坐标方程为


32.在答题卡第(24)题图中画出
33.求不等式
正确答案
见解析
解析
试题分析:本题属于圆的综合应用问题,属于简单题,只要掌握相关圆的知识,即可解决本题,解析如下:
设


因为


在






考查方向
解题思路
先证明

易错点
对相关定理不熟悉导致本题失分。
正确答案
见解析
解析
试题分析:本题属于圆的综合应用问题,属于简单题,只要掌握相关圆的知识,即可解决本题,解析如下:
因为





由已知得




同理可证,

考查方向
解题思路
(2)利用四点共圆,作直线

易错点
对相关定理不熟悉导致本题失分。
正确答案
圆,
解析
试题分析:本题属于坐标系与参数方程的综合应用问题,属于简单题,只要掌握相关的知识,即可解决本题,解析如下:


∴
∴


∵
∴

考查方向
解题思路
直接利用互化公式即可求出极坐标方程;
易错点
不能熟记极坐标方程与参数方程的互化公式及应用导致本题出错。
正确答案
1
解析
试题分析:本题属于坐标系与参数方程的综合应用问题,属于简单题,只要掌握相关的知识,即可解决本题,解析如下:








①—②得:
∴
考查方向
解题思路
把直线的参数方程化为普通方程,即可求解.
易错点
不能熟记极坐标方程与参数方程的互化公式及应用导致本题出错。
正确答案
解析
试题分析:本题属于不等式的选讲内容,不等式证明选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等,解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写出集合形式,属于简单题,只要掌握相关不等式的知识,即可解决本题,解析如下:
如图所示:
考查方向
解题思路
先将函数写成分段函数,然后作图;
易错点
忽略不等式的解集一定要写出集合形式导致丢分。
正确答案
解析
试题分析:本题属于不等式的选讲内容,不等式证明选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等,解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写出集合形式,属于简单题,只要掌握相关不等式的知识,即可解决本题,解析如下:
当


当



当



综上,


考查方向
解题思路
用零点分区间法分类讨论,然后取并集.
易错点
忽略不等式的解集一定要写出集合形式导致丢分。
选修4-1:几何证明选讲
如图,






28.求证:
29.求证:
正确答案
详见解题过程;
解析
试题分析:本题属于平面几何的基本问题,由圆的性质直接导出角关系。∵




考查方向
解题思路

易错点
对图形的分析不到位和定理不熟练导致出错。
正确答案
详见解题过程
解析
试题分析:本题属于平面几何的基本问题,由相似关系去证所证。连接





考查方向
解题思路

易错点
对图形的分析不到位和定理不熟练导致出错。
如图,
27.若

28.若E为上

正确答案
见解析
解析
∵PA交圆O于B,A PC交圆O于C,D,
考查方向
解题思路
利用辅助线,做出相似三角形,根据相似求出相关线段的长
易错点
辅助线,三角形相似条件找不准
正确答案
见解析
解析
连接EO CO,∵








考查方向
解题思路
利用辅助线,做出相似三角形,根据相似求出相关线段的长
易错点
辅助线,三角形相似条件找不准
如图,以





另一个交点



(1)证明

(2)若

正确答案
见解析
解析
(1)证明:连接

∴

∴△


∵



∴

∴

(2)解:∵





∵




∴⊙
知识点
22.如图,













证明:(Ⅰ)
(Ⅱ)
正确答案
略
解析
试题分析:本题属于平面几何中的基本问题,题目的难度是容易题。
(Ⅰ)证明:连接


因为:

由弦切角等于同弦所对的圆周角:
所以:



(Ⅱ)由切割线定理得:

所以:
由相交弦定理得:
所以:
考查方向
本题考查了平面几何的知识,主要涉及直线与圆的位置关系,三角形相似的考查.
解题思路
本题考查平面几何的知识,解题步骤如下:
1、利用圆的相关定理证明。
2、原来切割线定理和相交弦定理证明。
易错点
相关的定理容易混用。
知识点
扫码查看完整答案与解析









































