- 相似三角形的判定
- 共32题
选修4—1,几何证明选讲
圆的两弦
和
交于点
,
∥
,
交
的延长线于
点
,
切圆
于点
.
28.求证:△∽△
;
29.如果,求
的长.
正确答案
见解析
解析
考查方向
解题思路
利用辅助线,做出相似三角形,根据相似求出相关线段的长
易错点
辅助线,三角形相似条件找不准
正确答案
见解析
解析
∽
又因为
为切线,则
所以,
.
考查方向
解题思路
利用辅助线,做出相似三角形,根据相似求出相关线段的长
易错点
辅助线,三角形相似条件找不准
选修4—1:几何证明选讲
如图,为⊙
的直径,
直线
与⊙
相切于
,
垂直
于
,
垂直
于
,
垂直
于
,连接
,
.
27.;
28..
正确答案
(1)略;
解析
【证明】(Ⅰ)由直线与⊙
相切,得∠CEB=∠EAB.
由AB为⊙O的直径,得AE⊥EB,从而∠EAB+∠EBF=
又EF⊥AB,得∠FEB+∠EBF=,从而∠FEB=∠EAB. 故∠FEB=∠CEB.
考查方向
解题思路
先根据切割线定理求出,然后求出
,后即可得到答案;
易错点
找不到角之间的等量关系导致无法证明;
正确答案
(2)略
解析
(Ⅱ)由BC⊥CE,EF⊥AB,∠FEB=∠CEB,BE是公共边,得Rt△BCE≌Rt△BFE,
所以BC=BF.
类似可证,Rt△ADE≌Rt△AFE,得AD=AF.
又在Rt△AEB中,EF⊥AB,故EF2=AF·BF,
所以EF2=AD·BC.
考查方向
解题思路
先证明,后根据勾股定理即可求得答案。
易错点
找不到中间联系的量AF·BF导致证明无法进行下去。
【选修4-1:几何证明选讲】
如图,已知D为以AB为斜边的Rt△ABC的外接圆O上一点,CE⊥AB,BD交AC,CE的交点分别为F,G,且G为BF中点,
27.求证:BC=CD;
28.过点C作圆O的切线交AD延长线于点H,若AB=4,DH =1,求AD的长.
正确答案
(1)BC=CD;
解析
(1)由题意知为圆的直径,则
.
又∵为
中点,∴
,
.
由,知
,
,
∴,则
,
∴,∴
,即
.
考查方向
解题思路
(1)通过弧长相等得出线段相等;(2)通过圆的切割线定理计算AD的长。
易错点
对圆的切割线定理的灵活运用。
正确答案
(2)AD=2
解析
(2)∵四点共圆,所以
,
又∵为
的切线,∴
,
∴,∴
,且
.
由(1)知,且
,
,[
∴,
.
由切割线定理,得,
,解得
.
考查方向
解题思路
(1)通过弧长相等得出线段相等;(2)通过圆的切割线定理计算AD的长。
易错点
对圆的切割线定理的灵活运用。
14.如图,圆O的弦AB,CD相交于点E,过点A作圆O的切线与DC的延长线交于点P,若PA=6,AE=9,PC=3,CE:ED=2:1,则BE=_______.
正确答案
2
解析
首先由切割线定理得,因此
,
,又
,因此
,再相交弦定理有
,所以
.
考查方向
解题思路
平面几何问题主要涉及三角形全等,三角形相似,四点共圆,圆中的有关比例线段(相关定理)等知识,本题中有圆的切线,圆的割线,圆的相交弦,由圆的切割线定理和相交弦定理就可以得到题中有关线段的关系.
易错点
平面几何有关性质的综合应用
知识点
如图,正方形ABCD边长为2,以A为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连结BF并延长交CD于点E.
27.求证:E为CD的中点;
28.求EF·FB的值.
正确答案
见解析
解析
解:(Ⅰ)由题可知是以为
圆心,
为半径作圆,而
为正方形,
∴为圆
的切线
依据切割线定理得
∵圆以
为直径,∴
是圆
的切线,
同样依据切割线定理得
故
∴为
的中点.
考查方向
解题思路
本题解题思路
1)借助圆的切割定理得出,
进而证明第一问
2)借助等面积求解FC,使用射影定理得到第二问
易错点
本题易错cd是两圆的切线,
正确答案
见解析
解析
解:
(Ⅱ)连结,
∵为圆
的直径,
∴ 由
得
又在中,由射影定理得
考查方向
解题思路
本题解题思路
1)借助圆的切割定理得出,
进而证明第一问
2)借助等面积求解FC,使用射影定理得到第二问
易错点
本题易错cd是两圆的切线,
扫码查看完整答案与解析