- 充要条件的判定
- 共165题
1
题型:
单选题
|
5.设p:实数x.y满足x>1且y>1,q: 实数x,y满足x+y>2,则p是q的( )
正确答案
A
知识点
充要条件的判定充要条件的应用
1
题型:
单选题
|
设p:实数x.y满足x>1且y>1,q: 实数x,y满足x+y>2,则p是q的( )
正确答案
A
知识点
充要条件的判定
1
题型:
单选题
|
15.设,则“a>1”是“a2>1”的()
正确答案
A
解析
“a>1” “a2>1”,“a2>1”
“a>1”,所以“a>1”是“a2>1”的充分非必要条件.
考查方向
充分条件,必要条件
解题思路
充分条件,必要条件
易错点
定义
知识点
充要条件的判定
1
题型:
单选题
|
18.设f(x)、g(x)、h(x)是定义域为的三个函数.对于命题:①若f(x)+g(x)、f(x)+ h(x)、g(x)+ h(x)均是增函数,则f(x)、g(x)、h(x)均是增函数;②若f(x)+g(x)、f(x)+ h(x)、g(x)+ h(x)均是以T为周期的函数,则f(x)、g(x)、h(x) 均是以T为周期的函数,下列判断正确的是( )
正确答案
D
知识点
充要条件的判定
1
题型:
单选题
|
5.设,
,则“
”是“
”的( )
正确答案
C
解析
试题分析:,所以充分性不成立;
,必要性成立,故选C
考查方向
本题主要考查了不等式的性质、推出与充分条件、必要条件等知识点,为高考常考题,在近几年的各省高考题出现的频率较高,常与不等式的性质、数列、两直线的位置关系等知识点交汇命题。
解题思路
直接根据充分、必要条件的三种判断方法进行判断.
易错点
对充分、必要条件的三种判断方法不清楚导致出错。
知识点
充要条件的判定
下一知识点 : 充要条件的应用
扫码查看完整答案与解析