热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 13 分

如图,已知直线与抛物线和圆都相切,是抛物线的焦点。

(1)求的值;

(2)设上的一动点,以为切点作抛物线的切线,直线轴于点,以为邻边作平行四边形,证明:点在一条定直线上;

(3)在(2)的条件下,记点所在的定直线为,直线轴交点为,连接交抛物线两点,求△的面积的取值范围。

正确答案

见解析

解析

(1)由已知,圆的圆心为,半径.

由题设圆心到直线的距离,即

解得.………………3分

与抛物线的切点为,又,得.

代入直线方程得:

.………………5分

(2)由(1)知抛物线方程为,焦点.

,由(1)知以为切点的切线的方程为.

,得切线交y轴的B点坐标为

所以

,即点在定直线上.……………8分

(3)设直线,代入

,设的横坐标分别为

,即△的面积S范围是.  ……………13分

知识点

直线与圆的位置关系圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

如图,已知抛物线和⊙,过抛物线上一点作两条直线与⊙相切于两点,分别交抛物线为E、F两点,圆心到抛物线准线的距离为

(1)求抛物线的方程;

(2)当的角平分线垂直轴时,求直线的斜率;

(3)若直线轴上的截距为,求的最小值。

正确答案

(1)(2)(3)-11

解析

解析:(1)∵点到抛物线准线的距离为

,即抛物线的方程为  。----------------------------------------------2分

(2)法一:∵当的角平分线垂直轴时,点,∴

,   ∴ 

。    。---------------------------6分

法二:∵当的角平分线垂直轴时,点,∴,可得,∴直线的方程为

联立方程组,得

   ∴

同理可得,∴。---------------------------6分

(3)法一:设,∵,∴

可得,直线的方程为

同理,直线的方程为

∴直线的方程为,  令,可得

关于的函数在单调递增,   ∴。------------------------------12分

法二:设点

为圆心,为半径的圆方程为,........................................................................................................................................ ①

方程:。....................................................... ②

①-②得:直线的方程为

时,直线轴上的截距

关于的函数在单调递增,   ∴。 ------------------------12分

知识点

直线的倾斜角与斜率抛物线的标准方程和几何性质圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

20.已知椭圆C:+=1(a>b>0)的离心率为,短轴一个端点到右焦点的距离为。

(1)求椭圆C的方程;

(2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型: 单选题
|
单选题 · 5 分

11.抛物线的焦点为F,点A,B在抛物线上,且,弦AB中点M在其准线上的射影为N,则的最大值为(    )

A

B

C1

D

正确答案

A

解析

解析已在路上飞奔,马上就到!

知识点

抛物线的标准方程和几何性质直线与抛物线的位置关系圆锥曲线中的范围、最值问题
1
题型:简答题
|
简答题 · 12 分

20.已知椭圆C:的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线与以椭圆C的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.

(1)求椭圆的方程;

(2)设为椭圆上一点,若过点的直线与椭圆相交于不同的两点,且满足(O为坐标原点),求实数的取值范围.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

向量在几何中的应用椭圆的定义及标准方程圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
下一知识点 : 圆锥曲线的定点、定值问题
百度题库 > 高考 > 理科数学 > 圆锥曲线中的范围、最值问题

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题