热门试卷

X 查看更多试卷
1
题型:填空题
|
填空题 · 12 分

20.在平面直角坐标系中,已知椭圆的离心率,且椭圆上一点到点的距离的最大值为4.

(Ⅰ)求椭圆的方程;

(Ⅱ)设为抛物线上一动点,过点作抛物线的切线交椭圆两点,求面积的最大值.

正确答案

(Ⅰ)

(Ⅱ)

解析

(Ⅰ)因为,所以

则椭圆方程为

,则

时,有最大值为

解得,则

所以椭圆的方程是

(Ⅱ)设曲线上的点,因为

所以直线的方程为:.       ①

将①代入椭圆方程中整理,

则有

所以

设点到直线的距离为,则

所以的面积

时取到“=”,经检验此时,满足题意.

综上,面积的最大值为

考查方向

本题考查了直线与圆锥曲线的关系,椭圆的标准方程以及二次函数求最值。

解题思路

易错点

第一问未能利用|MQ|最大值求出b;第二问运算量较大,代数式化简容易出错。

知识点

椭圆的定义及标准方程椭圆的几何性质抛物线的标准方程和几何性质圆锥曲线中的范围、最值问题
1
题型:简答题
|
简答题 · 16 分

22.如图,曲线由两个椭圆和椭圆组成,当成等比数列时,称曲线为“猫眼曲线”.

(1)若猫眼曲线过点,且的公比为,求猫眼曲线的方程;

(2) 对于题(1)中的求猫眼曲线,任作斜率为且不过原点的直线与该曲线相交,交椭圆所得弦的中点为,交椭圆所得弦的中点为,求证:为与无关的定值;

(3) 若斜率为的直线为椭圆的切线,且交椭圆于点为椭圆上的任意一点(点与点不重合),求面积的最大值.

正确答案

(1) 

(2)证法略;

(3)

解析

(1)

(2)设斜率为的直线交椭圆于点,线段中点

,得

存在且,且

 ,即

同理,

 得证

(3)设直线的方程为

两平行线间距离:

的面积最大值为

注:若用第一小题结论,算得:

的面积最大值为

考查方向

本题考查了椭圆的定义,方程的求法,直线与椭圆的位置关系,在近几年的各省高考题出现的频率非常高,常与求函数值域等知识点交汇命题。

解题思路

本题考查了椭圆的定义,方程的求法,直线与椭圆的位置关系,解题步骤如下:

(1)待定系数法求出椭圆方程;

(2)点差法推导直线的斜率的关系;

(3)利用设而不求,弦长公式求解三角形面积,

易错点

注意焦点位置的变化,区分几何意义的转变。

知识点

椭圆的定义及标准方程圆锥曲线中的范围、最值问题圆锥曲线的定点、定值问题
1
题型:简答题
|
简答题 · 12 分

20.椭圆,作直线交椭圆于两点,为线段的中点,为坐标原点,设直线的斜率为,直线的斜率为.

(1)求椭圆的离心率;

(2)设直线轴交于点,且满足,当的面积最大时,求椭圆的方程.

正确答案

(1)

(2)

解析

试题分析:本题属于椭圆的几何性质、直线与椭圆的位置关系、基本不等式.等知识点的综合应用问题,属于拔高题,第二问不容易得分,解析如下:

(1)设,代入椭圆C的方程有:

,     、

两式相减:

联立两个方程有

解得:.

(2)由(1)知,得

可设椭圆C的方程为:

设直线l的方程为:,代入椭圆C的方程有

因为直线l与椭圆C相交,所以

由韦达定理:.

,所以

代入上述两式有:

所以

当且仅当时,等号成立,此时,代入,有成立,

所以所求椭圆C的方程为:.

考查方向

本题考查了椭圆的几何性质、直线与椭圆的位置关系、基本不等式等知识点。

解题思路

(1)设,并分别代入椭圆方程中,然后两式相减,利用直线斜率公式求得,从而求得离心率;

(2)设椭圆的方程为:,直线的方程为:,然后联立椭圆与直线的方程得到关于的二次方程,然后由,及利用韦达定理得出的表达式,从而利用基本不等式求得椭圆的方程.

易错点

相关知识点不熟容易证错。

知识点

直线的倾斜角与斜率椭圆的定义及标准方程椭圆的几何性质圆锥曲线中的范围、最值问题
1
题型:简答题
|
简答题 · 16 分

已知椭圆上两个不同的点A,B关于直线对称.

(1)若已知为椭圆上动点,证明:

(2)求实数的取值范围;

(3)求面积的最大值(为坐标原点).

正确答案

(1)设,

 于是=      

所以,当时,.即

(2)由题意知,可设直线的方程为.

消去,得

因为直线与椭圆有两个不同的交点,

所以,,即                 

 ①将中点代入直线方程解得           

②由①②得(3)令,即

 

到直线的距离为的面积为

所以

当且仅当时,等号成立.

面积的最大值为.

解析

本题属于解析几何的综合应用题,题目的难度是偏难,本题的关键是:

(1)、利用两点间的距离公式和点在曲线上的定义求出线段的范围;

(2)、利用设而不求法和中点坐标公式,求出m,b之间的关系,从而求出m的取值范围;

(3)、利用三角形面积公式和点到直线的距离公式,求出面积的表达式

考查方向

本题考查了椭圆与直线的位置关系、函数的取值范围问题的综合应用

易错点

1、,的讨论,求出2、利用因为直线与椭圆有两个不同的交点,所以很容易忘记

知识点

椭圆的几何性质直线与椭圆的位置关系圆锥曲线中的范围、最值问题
1
题型:简答题
|
简答题 · 13 分

20.已知椭圆C的中心在坐标原点O,左焦点为F(-l,0),离心率为

(1)求椭圆C的标准方程;

(2)过点F的直线,与椭圆C交于A、B两点,设(其中1<入<3),求的取值范围,

正确答案

(1);(2)

解析

试题分析:本题属于圆锥曲线中的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求(2)要注意对参数的讨论.

(1)

(2)由(其中1<入<3)知,直线l不水平,设l:x=my-1,A(x1,y1),B(x2,y2)

联立:消x得:(2+m2)y2-2my-1=0,得

(其中1<入<3)得y1= -λy2……② 则

令t=,则0<t<,得……③。

=x1x2+y1y2=(my1-1)(my2-1)+y1y2=(1+m2)y1y2-m(y1+y2)+1=

将③代入,得=,从而

考查方向

本题考查了椭圆的标准方程和直线与椭圆的位置关系、平面向量等知识点.

解题思路

本题考查圆锥曲线与直线的位置关系,解题步骤如下:

(1)利用e和c求a,b。

(2)联立直线与椭圆方程求解。

易错点

(1)第二问中的易丢对a的分类讨论。

知识点

平面向量数量积的运算椭圆的定义及标准方程圆锥曲线中的范围、最值问题
下一知识点 : 圆锥曲线的定点、定值问题
百度题库 > 高考 > 理科数学 > 圆锥曲线中的范围、最值问题

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题