热门试卷

X 查看更多试卷
1
题型:填空题
|
填空题

不等式的解集为__________.

正确答案

1
题型:简答题
|
简答题

已知U=R且A={x|x2﹣5x﹣6<0},B={x||x﹣2|≥1},求

(1)A∩B;

(2)A∪B;

(3)(CUA)∩(CUB).

正确答案

解:A={x|x2﹣5x﹣6<0}=(﹣1,6)

B={x||x﹣2|≥1}={x|x≥3,或x≤1},

(1)A∩B={x|﹣1<x≤1,或3≤x<6}

(2)A∪B=R

(3)∵U=R,∴CUA={x|x≤﹣1,或x≥6}

同理CUB={x|1<x<3}.

∴(CUA)∩(CUB)=Φ.

1
题型:填空题
|
填空题

设命题p:|4x-3|≤1;命题q:x2-(2a+1)x+a(a+1)≤0.若¬p是¬q的必要而不充分条件,则实数a的取值范围是______.

正确答案

解|4x-3|≤1,得≤x≤1.    解x2-(2a+1)x+a(a+1)≤0. 得a≤x≤a+1.

因为┐p是┐q的必要而不充分条件,所以,q是p的必要不充分条件,

即由命题p成立能推出命题q成立,但由命题q成立不推出命p成立.

∴[,1]⊊[a,a+1].

∴a≤且a+1≥1,得0≤a≤

∴实数a的取值范围是:[0,].

1
题型:简答题
|
简答题

已知函数f(x)=ax3+bx2﹣3x在x=±1处取得极值

(1)求函数f(x)的解析式;

(2)求证:对于区间[﹣1,1]上任意两个自变量的值x1,x2,都有|f(x1)﹣f(x2)|≤4;(3)若过点A(1,m)(m≠﹣2)可作曲线y=f(x)的三条切线,求实数m的范围.

正确答案

解:(1)f′(x)=3ax2+2bx﹣3,依题意,f′(1)=f′(﹣1)=0,解得a=1,b=0.

∴f(x)=x3﹣3x

(2)∵f(x)=x3﹣3x,

∴f′(x)=3x2﹣3=3(x+1)(x﹣1),

当﹣1<x<1时,f′(x)<0,

故f(x)在区间[﹣1,1]上为减函数,fmax(x)=f(﹣1)=2,fmin(x)=f(1)=﹣2

∵对于区间[﹣1,1]上任意两个自变量的值x1,x2

都有|f(x1)﹣f(x2)|≤|fmax(x)﹣fmin(x)|

|f(x1)﹣f(x2)|≤|fmax(x)﹣fmin(x)|=2﹣(﹣2)=4

(3)f′(x)=3x2﹣3=3(x+1)(x﹣1),

∵曲线方程为y=x3﹣3x,

∴点A(1,m)不在曲线上.设切点为M(x0,y0),

切线的斜率为(左边用导数求出,右边用斜率的两点式求出),整理得2x03﹣3x02+m+3=0.

∵过点A(1,m)可作曲线的三条切线,故此方程有三个不同解,

下研究方程解有三个时参数所满足的条件设g(x0)=2x03﹣3x02+m+3,

则g′(x0)=6x02﹣6x0,由g′(x0)=0,得x0=0或x0=1.

∴g(x0)在(﹣∞,0),(1,+∞)上单调递增,在(0,1)上单调递减.

∴函数g(x0)=2x03﹣3x02+m+3的极值点为x0=0,x0=1

∴关于x0方程2x03﹣3x02+m+3=0有三个实根的充要条件是,解得﹣3<m<﹣2.故所求的实数a的取值范围是﹣3<m<﹣2.

1
题型:简答题
|
简答题

选做题

已知函数

(Ⅰ)当a=7时,求函数f(x)的定义域;

(Ⅱ)若关于x的不等式f(x)≥3的解集是R,求实数a的取值范围.

正确答案

解:(Ⅰ)由题设知:

不等式的解集是以下不等式组解集的并集:

,或,或

解得函数的定义域为; 

(Ⅱ)不等式

∵x∈R时,恒有

∵不等式解集是R,∴a+8≤3

∴a的取值范围是.       

下一知识点 : 比较法
百度题库 > 高考 > 数学 > 绝对值不等式的解法

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题