- 绝对值不等式的解法
- 共1415题
设奇函数f(x)的定义域为(﹣∞,0)∪(0+∞),且在(0,+∞)上为增函数.
(1)若f(1)=0,解关于x的不等式:f(1+logax)>0(0<a<1).
(2)若f(﹣2)=﹣1,当m>0,n>0时,恒有f(mn)=f(m)+f(n),求|f(t)+1|<1时,t的取值范围.
正确答案
解:(1)∵奇函数f(x)在(0,+∞)上为增函数,则在(﹣∞,0)也单调递增
∵f(1)=﹣f(﹣1)=0
∴f(﹣1)=0
当x>1或﹣1<x<0时,f(x)>0;
当0<x<1或x<﹣1时,f(x)<0
∵f(1+logax)>0
∴1+logax>1或﹣1<1+logax<0
∵0<a<1
∴0<x<1或a﹣1<x<2﹣2
(2)∵f(﹣2)=﹣1
∴f(2)=﹣f(﹣2)=1
∵m>0,n>0时,恒有f(mn)=f(m)+f(n),
∴f(4)=2f(2)=2,f(﹣4)=﹣2,f(1)=2f(1),
则f(1)=﹣f(﹣1)=0
∵|f(t)+1|<1
∴﹣2<f(t)<0
∴﹣4<t<﹣1
选修4-5:不等式选讲
已知函数f(x)=|2x+1|,g(x)=|x|+a-1
(1)当a=1,解不等式f(x)≥g(x);
(2)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.
正确答案
(1)当a=1时,由f(x)≥g(x)得|2x+1|≥|x|,
两边平方整理得3x2+4x+1≥0,解得x≤-1或x≥-,
∴原不等式的解集为(-∞,-1]∪[-,+∞)…(5分)
(Ⅱ)由f(x)≤g(x)得a-1≥|2x+1|-|x|,
令h(x)=|2x+1|-|x|,则 h(x)=…(7分)
故h(x)min=h(-)=-
,从而所求实数a的范围为a-1≥-
,即a≥
…(10分)
函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)解不等式g(x)≥f(x)-|x-1|.
(Ⅲ)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函数,求实数λ的取值范围.
正确答案
(Ⅰ)设函数y=f(x)的图象上任意一点Q(x0,y0)关于原点的对称点为P(x,y),
则即
∵点Q(x0,y0)在函数y=f(x)的图象上
∴-y=x2-2x,即y=-x2+2x,故g(x)=-x2+2x
(Ⅱ)由g(x)≥f(x)-|x-1|,可得2x2-|x-1|≤0
当x≥1时,2x2-x+1≤0,此时不等式无解.
当x<1时,2x2+x-1≤0,解得-1≤x≤.
因此,原不等式的解集为[-1,].
(Ⅲ)h(x)=-(1+λ)x2+2(1-λ)x+1
①当λ=-1时,h(x)=4x+1在[-1,1]上是增函数,∴λ=-1
②当λ≠-1时,对称轴的方程为x=.
ⅰ)当λ<-1时,≤-1,解得λ<-1.
ⅱ)当λ>-1时,≥-1,解得-1<λ≤0.综上,λ≤0.
设函数f(x)=|2x-4|+1,
(Ⅰ)画出函数y=f(x)的图象;
(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围。
正确答案
解:(Ⅰ)由于,则函数y=f(x)的图象如图所示,
(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,
当且仅当a≥或a<-2时,函数y=f(x)与函数y=ax的图象有交点,
故不等式f(x)≤ax的解集非空时,a的取值范围为(∞,-2)∪。
(选做题)
设函数f(x)=|2x-1|+x+3,则f(-2)=( );若f(x)≤ 5,则x的取值范围是( )。
正确答案
6;[-1,1]
扫码查看完整答案与解析