- 绝对值不等式的解法
- 共1415题
(不等式选讲)若不等式|x-2|+|x+3|<a的解集为∅,则实数a的取值范围为______.
正确答案
(-∞,5]
解析
解:|x-2|+|x+3|表示数轴上的x到-3和2的距离之和,其最小值等于5,∵不等式|x-2|+|x+3|<a的解集为∅,
∴a≤5,
故答案为:(-∞,5].
(2013•郴州校级模拟)对任意实数a(a≠0)和b,不等式|a+b|+|a-b|≥|a|(|x-1|+|x-2|)恒成立,则实数x的取值范围是______.
正确答案
解析
解:由绝对值不等式的性质可得|a+b|+|a-b|≥|a+b+(a-b)|=2|a|,
再由不等式|a+b|+|a-b|≥|a|(|x-1|+|x-2|)恒成立,可得2|a|≥|a|(|x-1|+|x-2|),
故有2|a|≥|a|(|x-1|+|x-2|),即 2≥|x-1|+|x-2|.
而由绝对值的意义可得|x-1|+|x-2|表示数轴上的x对应点到1和2对应点的距离之和,而和
对应点到1和2对应点的距离之和正好等于2,
故2≥|x-1|+|x-2|的解集为 ,
故答案为 .
若关于x的不等式|x+2|-|x-3|≤a有解,则a的取值范围为( )
正确答案
解析
解:令y=|x+2|-|x-3|,
∵||x+2|-|x-3||≤|x+2-(x-3)|=5,
∴-5≤|x+2|-|x-3|≤5,
则函数y=|x+2|-|x-3|的值域为[-5,5],
若不等式|x+2|-|x-3|≤a有解,
则a≥-5
故实数a的取值范围是[-5,+∞)
故选C.
将2006表示成5个正整数x1,x2,x3,x4,x5之和.记S=xixj.问:
(1)当x1,x2,x3,x4,x5取何值时,S取到最大值;
(2)进一步地,对任意1≤i,j≤5有≤2,当x1,x2,x3,x4,x5取何值时,S取到最小值.说明理由.
正确答案
解:(1)首先这样的S的值是有界集,故必存在最大值与最小值.
x1+x2+x3+x4+x5=2006,且使S=取到最大值,则必有|xi-xj|≤1(1≤i,j≤5)…(5分) (*)
事实上,假设(*)不成立,不妨假设x1-x2≥2,则令x1′′=x1-1,x2′=x2+1,xi′=xi (i=3,4,5),有x1′+x2′=x1+x2,x1′•x2′=x1x2+x1-x2-1>x1x2.
将S改写成S==x1x2+(x1+x2)(x3+x4+x5)+x3x4+x3x5+x4x5
同时有 S′=x1′x2′+(x1′+x2′)((x3+x4+x5)+x3x4+x3x5+x4x5.
于是有S′-S=x1′x2′-x1x2>0.
这与S在x1,x2,x3,x4,x5时取到最大值矛盾.
所以必有|xi-xj|≤1,(1≤i,j≤5).
因此当x1=402,x2=x3=x4=x5=401时S取到最大值. …(10分)
(2)当x1+x2+x3+x4+x5=2006,且|xi-xj|≤2时,只有
(1)402,402,402,400,400;
(2)402,402,401,401,400;
(3)402,401,401,401,401;
三种情形满足要求. …(15分)
而后两种情形是由第一组作xi′=xi-1,xj′=xj+1调整下得到的.
根据上一小题的证明可知道,每次调整都使和式S=变大.
所以在x1=x2=x3=402,x4=x5=400时S取到最小值.…(20分)
解析
解:(1)首先这样的S的值是有界集,故必存在最大值与最小值.
x1+x2+x3+x4+x5=2006,且使S=取到最大值,则必有|xi-xj|≤1(1≤i,j≤5)…(5分) (*)
事实上,假设(*)不成立,不妨假设x1-x2≥2,则令x1′′=x1-1,x2′=x2+1,xi′=xi (i=3,4,5),有x1′+x2′=x1+x2,x1′•x2′=x1x2+x1-x2-1>x1x2.
将S改写成S==x1x2+(x1+x2)(x3+x4+x5)+x3x4+x3x5+x4x5
同时有 S′=x1′x2′+(x1′+x2′)((x3+x4+x5)+x3x4+x3x5+x4x5.
于是有S′-S=x1′x2′-x1x2>0.
这与S在x1,x2,x3,x4,x5时取到最大值矛盾.
所以必有|xi-xj|≤1,(1≤i,j≤5).
因此当x1=402,x2=x3=x4=x5=401时S取到最大值. …(10分)
(2)当x1+x2+x3+x4+x5=2006,且|xi-xj|≤2时,只有
(1)402,402,402,400,400;
(2)402,402,401,401,400;
(3)402,401,401,401,401;
三种情形满足要求. …(15分)
而后两种情形是由第一组作xi′=xi-1,xj′=xj+1调整下得到的.
根据上一小题的证明可知道,每次调整都使和式S=变大.
所以在x1=x2=x3=402,x4=x5=400时S取到最小值.…(20分)
设对于不大于的所有正实数a,如果满足不等式|x-a|<b的一切实数x,也满足不等式
,求实数b的取值范围.
正确答案
解:由题意可得b>0是不用求的,否则|x-a|<b都没解了.
故有-b<x-a<b,即a-b<x<a+b.
由不等式可得,-
<x-a2<
,即 a2-
<x<a2+
.
第二个不等式的范围要大于第一个不等式,这样只要满足了第一个不等式,
肯定满足第二个不等式,命题成立.
故有 a2-≤a-b,且 a+b≤a2+
,0<a≤
.
化简可得 b≤-a2+a+,且b≤a2-a+
.
由于-a2+a+=-
+
∈[
,
],故 b≤
.
由于 a2-a+=
+
∈[
,
].故 b≤
.
综上可得 0<b≤.
解析
解:由题意可得b>0是不用求的,否则|x-a|<b都没解了.
故有-b<x-a<b,即a-b<x<a+b.
由不等式可得,-
<x-a2<
,即 a2-
<x<a2+
.
第二个不等式的范围要大于第一个不等式,这样只要满足了第一个不等式,
肯定满足第二个不等式,命题成立.
故有 a2-≤a-b,且 a+b≤a2+
,0<a≤
.
化简可得 b≤-a2+a+,且b≤a2-a+
.
由于-a2+a+=-
+
∈[
,
],故 b≤
.
由于 a2-a+=
+
∈[
,
].故 b≤
.
综上可得 0<b≤.
扫码查看完整答案与解析