- 平面与平面垂直的判定与性质
- 共129题
已知直线⊥平面,直线平面,下列命题正确的是 ( )
①∥ ②∥ ③∥ ④∥
正确答案
解析
略
知识点
已知直线,其中成等比数列,且直线经过抛物线的焦点,则
正确答案
解析
∵成等比数列,∴①,∵直线经过抛物线的焦点,∴②,由①②联立解得或(舍去),∴。
知识点
在如图所示的棱长为的正方体中,作与平面平行的截面,则截得的三角形中,面积最大的值是___;截得的平面图形中,面积最大的值是___。
正确答案
;
解析
略
知识点
某几何体的三视图如图所示,则该几何体外接球的表面积为
正确答案
解析
略
知识点
如图4, 在三棱锥中,。
(1)求证:平面平面;
(2)若,,当三棱锥的体积最大时,
求的长。
正确答案
见解析。
解析
(1)证明:因为,所以,,
因为,所以平面。
因为平面,所以。
因为,所以,…
因为,所以平面。
因为平面,所以平面平面。
(2)
方法1:由已知及(1)所证可知,平面,,
所以是三棱锥的高。
因为,,设,
所以。
因为
,
当且仅当,即时等号成立,
所以当三棱锥的体积最大时,,
方法2:由已知及(1)所证可知,平面,
所以是三棱锥的高。
因为,设,
则,
所以,1
所以
。
因为,
所以当,有最大值,
此时,
所以当三棱锥的体积最大时,。
知识点
如图2所示,已知四棱锥P–ABCD的底面是直角梯形,∠ABC=∠BCD = 90°,AB = BC = PB = PC = 2CD,侧面PBC⊥底面ABCD。
(1)证明:PA⊥BD;
(2)求二面角P – BD – C的大小;
(3)求证:平面PAD⊥平面PAB。
正确答案
见解析。
解析
解法一:
(1)取BC中点O,连结AO交BD于点E,连结PO
∵PB = PC,∴PO⊥BC
又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD = BC
∴PO⊥平面ABCD
在直角梯形ABCD中
∵AB = BC = 2CD,易知Rt△ABO≌Rt△BCD
∴∠BEO =∠OAB +∠DBA =∠DBC +∠DBA = 90°
即AO⊥BD,由三垂线定理知PA⊥BD。
(2)连结PE,由PO⊥平面ABCD,AO⊥BD
得PE⊥BD
∴∠PEO为二面角P – BD – C的平面角
设AB = BC = PB = PC = 2CD = 2a
则PO =a,OE =
在Rt△PEO中,tan∠PEO =
∴二面角P – BD– C的大小为arctan
(3)取PB的中点为N,连结CN,则CN⊥PB
又∵AB⊥BC,BC是PB在面ABCD内的射影
∴AB⊥PB,又PB∩BC = B
∴AB⊥面PBC,∴平面PAB⊥平面PBC
∵CN⊥PB,面PAB∩面PBC = PB
∴CN⊥平面PAB
取PA的中点为M,连结DM、MN
则MN∥AB∥CD,∵MN =AB = CD
∴四边形MNCD为平行四边形
∴CN∥DM,∴DM⊥平面PAB
∴平面PAD⊥平面PAB。
解法二:
(1)取BC中点为O
∵侧面PBC⊥底面ABCD,△PBC为等边三角形
∴PO⊥底面ABCD,以BC的中点O为坐标原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,直线OP为z轴,如图乙所示,建立空间直角坐标系。
不妨设CD = 1
则AB = BC = PB = PC = 2,PO =
∴A(1,– 2,0),B (1,0,0),D (– 1,– 1,0),P (0,0,)
∴= (– 2,– 1,0),= (1,– 2,–)
∵·= (– 2) × 1 + (– 1) × (– 2) + 0 × (–) = 0
∴⊥,∴PA⊥BD
(2)连结AO,设AO与BD相交于点E,连结PE
由· = 1 × (– 2) + (– 2) × (– 1) + 0 × 0 = 0
∴⊥,∴OA⊥BD
又∵EO为PE在平面ABCD内的射影,∴PE⊥BD
∴∠PEO为二面角P – BD – C的平面角
在Rt△BEO中,OE = OB · sin∠OBE =
∴在Rt△PEO中,tan∠PEO =
∴二面角P – BD – C的大小为arctan
(3)取PA的中点M,连结DM
则M,又∵
∴·=× 1 + 0 × (– 2) +
∴⊥,即DM⊥PA
又∵= (1,0,)
∴·=× 1 + 0 × 0 +
∴⊥,即DM⊥PB,∴DM⊥平面PAB
∴平面PAD⊥平面PAB。
知识点
如图,AD平面ABC,AD∥CE,AC=AD=AB=1,∠BAC=90°,凸多面体ABCED的体积为,F为BC的中点.
(1)求证:AF∥平面BDE;
(2)求证:平面BDE平面BCE.
正确答案
见解析。
解析
(1)证明:∵AD⊥平面ABC,AC面ABC,AB面ABC,
∴AD⊥AC,AD⊥AB,
∵AD∥CE,∴CE⊥AC
∴四边形ACED为直角梯形.……………(1分)
又∵∠BAC=90°,∴AB⊥AC,∴AB⊥面ACED.
………………(2分)
∴凸多面体ABCED的体积
求得CE=2.……………………………………………………(3分)
取BE的中点G,连结GF,GD,
则GF∥EC,GFCE=1,
∴GF∥AD,GF=AD,四边形ADGF为平行四边形,
∴AF∥DG.………………………………………………………(5分)
又∵GD面BDE,AF面BDE,
∴AF∥平面BDE.………………………………………………(7分)
(2)证明:∵AB=AC,F为BC的中点,
∴AF⊥BC.………………………………………………………(8分)
由(1)知AD⊥平面ABC,AD∥GF,∴GF⊥面ABC.
∵AF面ABC,∴AF⊥GF. ……………………………………(9分)
又BCGF=F,∴AF⊥面BCE.…………………………………(10分)
又∵DG∥AF,∴DG⊥面BCE.……………………………(11分)
∵DG面BDE,∴面BDE⊥面BCE.……………………(12分)
知识点
如图:已知长方体的底面是边长为的正方形,高,为的中点,与交于点,
(1)求证:平面;
(2)求证:∥平面;
(3)求三棱锥的体积,
正确答案
见解析
解析
(1)底面是边长为正方形,
底面,平面————3分
,平面——5分
(2)连结,为的中点,为的中点
∥,————7分
又平面,平面
∥平面————10分
(3),,,
同样计算可得,为等腰三角形,————12分
,,等腰三角形的高为
————14分
知识点
如图5,在平行四边形ABCD中,∠A=90°,∠B=135°,∠C=60°,AB=AD,M,N分别是边AB,CD上的点,且2AM=MD,2CN=ND,如图5,将△ABD沿对角线BD折叠,使得平面ABD⊥平面BCD,并连结AC,MN(如图6)。
(1)证明:MN∥平面ABC;
(2)证明:AD⊥BC;
(3)若BC=1,求三棱锥A-BCD的体积。
正确答案
见解析。
解析
知识点
已知如图:平行四边形ABCD中,BC=6,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点。
(1)求证:GH∥平面CDE;
(2)若CD=2,,求四棱锥F-ABCD的体积。
正确答案
见解析。
解析
(1)证法:∵EF//AD, AD//BC ∴EF//BC且EF=AD=BC
∴四边形EFBC是平行四边形 ∴H为FC的中点
又∵G是FD的中点
∴HG//CD
平面CDE,平面CDE
∴GH//平面CDE
证法2:连结EA,∵ADEF是正方形 ∴G是AE的中点
∴在△EAB中,GH//AB
又∵AB//CD,∴GH//CD,
平面CDE,平面CDE
∴GH//平面CDE
(2)∵平面ADEF⊥平面ABCD,交线为AD
且FA⊥AD, ∴FA⊥平面ABCD,
∵BC=6, ∴FA=6 又∵CD=2,, CD2+DB2=BC2
∴BD⊥CD
知识点
扫码查看完整答案与解析