- 与圆有关的比例线段
- 共90题
22.如图,AB为圆O的直径,BE为圆O的切线,点C为圆O上不同于A、B的一点,AD为∠BAC的平分线,且分别与BC交于H,与圆O交于D,与BE交于E,连结BD、CD.
(Ⅰ)求证:BD平分∠CBE;
(Ⅱ)求证:.
正确答案
见解析
解析
证明:
(I)由弦切角定理得到∠DBE=∠DAB,又∠DBC=∠DAC,∠DAB=∠DAC,所以∠DBE=∠DBC,即BD平分∠CBE.
(Ⅱ)由(I)可知BE=BH,所以,因为∠DAB=∠DAC,∠ACB=∠ABE,所以△AHC∽△AEB,
所以,即
,即
.
考查方向
解题思路
利用弦切角定理找出与其相等的角,并进行相等角间转化;利用相似三角形的判定定理判定△AHC∽△AEB;利用相似三角形对应边成比例,证明有关问题.
易错点
辅助线的作法,相似条件找不准
知识点
22.选修4-1:几何证明选讲
如图,已知:是以
为直径的半圆
上一点,
⊥
于点
,直线
与过
点
的切线相交于点[来
,
为
中点,连接
交
于点
,
(Ⅰ)求证:∠BCF=∠CAB ;
(Ⅱ)若FB=FE=1,求⊙O的半径.
正确答案
(Ⅰ)略
(Ⅱ)
解析
(Ⅰ)证明:因为AB是直径,
所以∠ACB=90°
又因为F是BD中点,所以∠BCF=∠CBF=90°-∠CBA=∠CAB
因此∠BCF=∠CAB
(Ⅱ)解:直线CF交直线AB于点G,
由FC=FB=FE得:∠FCE=∠FEC
可证得:与
全等,所以 FA=FG,
且AB=BG
由切割线定理得:(1+FG)2=BG×AG=2BG2 ……①
在Rt△BGF中,由勾股定理得:BG2=FG2-BF2 ……②
由①、②得:FG2-2FG-3=0
解之得:FG1=3,FG2=-1(舍去)
所以AB=BG=
所以⊙O半径为.
考查方向
解题思路
第一问:由已知条件得FC=FB=FE得到∠BCF=∠CBF=∠CAB
第二问:由FC=FB=FE得:∠FCE=∠FEC,继而证得:与
全等,得到FA=FG,由切割线定理得:(1+FG)2=BG×AG=2BG2 再由勾再由股定理得:BG2=FG2-BF2,,然后求出FG
易错点
1、第一问想到弦切角定理,进而向证明CF与圆相切,虽然可以证明,但是,但是过程稍烦一些。
2、第二问没有注意题中的已知条件,而运用导致无法计算
知识点
13.如图,为圆
的直径,
为圆
上一点,
和过
的切线互相垂直,垂足为
,过
的切线交过
的切线于
,
交圆
于
,若
,
,则
__________.
正确答案
3
解析
由题意可得,圆的半径为2,
设PT与AB交于点M,因为角BTC=120度,
所以角COB等于角BTM等于60度。
角BMT等于30度,
,
,
所以可知,,
因为,
所以
所以,
由切割线定理可知
考查方向
解题思路
先求出MC的值,然后利用切割线定理求PQ和PB的乘积
易错点
相关性质混淆
知识点
22. 如图,在直角中,
,
为
边上异于
的一点,以
为直径作
,分别交
于点
.
(Ⅰ)证明:四点共圆;
(Ⅱ)若为
中点,且
,求
的长.
正确答案
(Ⅰ)略
(Ⅱ)
解析
试题分析:本题是有关直线与圆的问题,难度不大。在解题中注意结合切线的性质和勾股定理等知识进行解决。
(Ⅰ)
连结,则
,
因为为直径,所以
,
因为,所以
,
所以,
所以四点共圆.
(Ⅱ)由已知为
的切线,所以
,故
,
所以,
因为为
中点,所以
.
因为四点共圆,所以
,
所以
考查方向
解题思路
本题主要考查圆的基本性质、圆周角定理等基础知识。解题步骤如下:
(Ⅰ)利用四点共圆的判定定理,证明四点共圆;
(Ⅱ)利用切线性质和勾股定理及第一问的结论,求出的长。
易错点
第二问计算中,不易想到利用第一问四点共圆的性质解决。
知识点
22.已知四边形ABCD内接于⊙O,AD:BC=1:2,BA、CD的延长线交于点E,且EF切⊙O于F.
(Ⅰ)求证:EB=2ED;
(Ⅱ)若AB=2,CD=5,求EF的长.
正确答案
(Ⅰ)见解析
(Ⅱ)EF=2
解析
(Ⅰ)证明:∵四边形ABCD内接于⊙O,∴∠EAD=∠C,又∵∠DEA=∠BEC,∴△AED∽△CEB,
∴ED:EB=AD:BC=1:2,即EB=2ED;
(Ⅱ)∵EF切⊙O于F.∴EF2=ED•EC=EA•EB,设DE=x,则由AB=2,CD=5得:
x(x+5)=2x(2x﹣2),解得:x=3,∴EF2=24,即EF=2
考查方向
解题思路
本题考查了圆内接四边形的性质、圆的切割线定理及三角形的相似问题.
(Ⅰ)主要用三角形相似进行转化
(Ⅱ)要用切割线定理进行转化得结果。
易错点
圆的切割线定理及三角形的相似问题,相似时比例的转化易错。
知识点
扫码查看完整答案与解析