热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

已知各项均为正数的数列{an}前n项和为Sn,(p – 1)Sn = p2 – an,n∈N*,p > 0且p≠1,数列{bn}满足bn = 2logpan

(1)求an,bn

(2)若p =,设数列的前n项和为Tn,求证:0 < Tn≤4;

(3)是否存在自然数M,使得当n > M时,an > 1恒成立?若存在,求出相应的M;若不存在,请说明理由。

正确答案

见解析。

解析

(1)由(p – 1)Sn = p2 – an (n∈N*)                   ①

由(p – 1)Sn – 1 = p2 – an – 1                                 ②

① – ②得(n≥2)

∵an > 0 (n∈N*)

又(p – 1)S1 = p2 – a1,∴a1 = p

{an}是以p为首项,为公比的等比数列

an = p

bn = 2logpan = 2logpp2 – n

∴bn = 4 – 2n

(2)证明:由(1)知,bn = 4 – 2n,an = p2 – n

又由条件p =得an = 2n – 2

∴Tn =                   ①

                        ②

① – ②得

= 4 – 2 ×

= 4 – 2 ×

∴Tn =

Tn – Tn – 1 =

当n > 2时,Tn – Tn – 1< 0

所以,当n > 2时,0 < Tn≤T3 = 3

又T1 = T2 = 4,∴0 < Tn≤4。

(3)解:若要使an > 1恒成立,则需分p > 1和0 < p < 1两种情况讨论

当p > 1时,2 – n > 0,n < 2

当0 < p < 1时,2 – n < 0,n > 2

∴当0 < p < 1时,存在M = 2

当n > M时,an > 1恒成立。

知识点

由an与Sn的关系求通项an错位相减法求和数列与不等式的综合
1
题型:简答题
|
简答题 · 12 分

已知等差数列的前项和为.

(1)请写出数列的前项和公式,并推导其公式;

(2)若,数列的前项和为,求的和。

正确答案

见解析。

解析

(1)

证明:设等差数列的公差为,因为

所以

由①+②得:

所以

(2) 因为,所以,

所以

因此

知识点

由an与Sn的关系求通项an
1
题型: 单选题
|
单选题 · 5 分

已知数列的前项和为,则=

A64

B32

C16

D8

正确答案

C

解析

知识点

由an与Sn的关系求通项an
1
题型:简答题
|
简答题 · 14 分

已知数列的前n项和为,且.

(1)求数列的通项公式

(2) 已知,求证:

.

正确答案

见解析。

解析

(1)当时,

,可得:

(2)设

上单调递减,

∵当时,

 

知识点

由an与Sn的关系求通项an
1
题型:简答题
|
简答题 · 12 分

已知点(1,2)是函数的图象上一点,数列的前n项和.

(1)求数列的通项公式;

(2)将数列前2013项中的第3项,第6项,…,第3k项删去,求数列前2013项中剩余项的和.

正确答案

见解析。

解析

(1)把点(1,2)代入函数,得.……………………(1分)

…………………………………………(2分)

时,…………………………………(3分)

时,

……………………………………………(5分)

经验证可知时,也适合上式,

.…………………………………………………………(6分)

(2)由(1)知数列为等比数列,公比为2,故其第3项,第6项,…,第2013项也为等比数列,首项公比为其第671项………………………………………………………………(8分)

∴此数列的和为……………………(10分)

又数列的前2013项和为

…………………………………(11分)

∴所求剩余项的和为…(12分

知识点

由an与Sn的关系求通项an分组转化法求和
下一知识点 : 由递推关系式求数列的通项公式
百度题库 > 高考 > 文科数学 > 由an与Sn的关系求通项an

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题