- 三角函数的图象与性质
- 共712题
8.设函数的图象为曲线
,动点
在曲线
上,过
且平行于
轴的直线交曲线
于点
可以重合),设线段
的长为
,则函数
单调递增区间( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
16. =sin2
+
(
>0),且函数
的图象相邻两条对称轴之间的距离为
。
(1)求的值及
的单调递增区间;
(2)在△ABC中,分别是角A,B,C的对边,若
=1,
=
,
(A)=1,求角C。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
16.在直角坐标系中,已知,
,
为坐标原点,
,
。
(Ⅰ)求的对称中心的坐标及其在区间
上的单调递减区间;
(Ⅱ)若,
,求
的值。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
17.已知函数
(1)求函数的周期;
(2)求函数的最大值,并求此时x的值;
(3)求函数的单调增区间.
正确答案
解:
(1),
;
(2)的周期为
;
(3)令
则
所以函数的单调增区间为
.
解析
解析已在路上飞奔,马上就到!
知识点
26.已知函数,将函数
的图像向右平移
个单位,再把横坐标缩短到原来的
(纵坐标不变),得到函数
的图像,求函数
的解析式,并写出它的单调递增区间.
正确答案
;单调递增区间为
.
解析
试题分析:
本题属于三角函数中的基本问题,题目的难度是逐渐由易到难,
(1)直接按照步骤来求
(2)要注意公式的应用
由,将函数
的图像向右平移
个单位,得
再把横坐标缩短到原的(纵坐标不变),得到
。
由,可得
所以的单调递增区间为
考查方向
本题考查了三角函数图像变换的知识,涉及到图像性质,是高考题中的高频考点
解题思路
本题考查三角函数图像变换,解题步骤如下:
1、利用伸缩平移变换化简。
2、利用公式代入求解。
易错点
平移变换时容易出错。
知识点
7.定义矩阵
,若
,则
( )
正确答案
解析
根据矩阵的定义,可以得到
所以,所以
根据的性质判断性质,所以选C
考查方向
三角函数
解题思路
先根据矩阵的定义,得到f(x)的解析式,然后根据函数的解析式判断函数的相关性质.
易错点
三角函数公式记忆混淆
知识点
9.若函数为偶函数,则函数
在区间
上的取值范围是
正确答案
解析
由函数为偶函数知
,结合
的范围可知
,所以
,由
知
,所以
,因此
,故选择A选项。
考查方向
本题主要考查了正弦型函数的奇偶性及单调性,为高考常考题,在近几年的各省高考题出现的频率较高,常与正弦型函数的单调性、奇偶性、对称性等知识点交汇命题。
解题思路
先由所给函数为偶函数求出,再由自变量的范围及正弦函数的单调性即可求值域。
易错点
本题容易直接带区间端点导致值域求错。
知识点
6.已知是函数
的一个极大值点,则
的一个单调递减区间是
正确答案
解析
由是函数
的一个极大值点得
,所以
,得
,所以
,令
,得
,所以
的单调递减区间是
,故选B。
考查方向
解题思路
1、先由是函数
的一个极大值点求出
;
2、然后求函数的单调递减区间
,最后令
即可得到答案。
易错点
1、将三角函数的最值以极值的形式出现导致无法理解题意致误。
2、将三角函数的最值、单调区间记错、求错出错。
知识点
8.设函数的图象在
时取最大值,它的周期是
,则 ( )
正确答案
解析
由题得周期为,
得
,
,
时单调递减
考查方向
解题思路
该题首先根据周期求出,在根据对称轴的最大值得出
,最后找到该三角函数的单调性
易错点
本题易错在(1)忽略A为负值(2)对称中心计算错误(3)单调性不能判断
知识点
16.已知函数(其中
),若
的一条对称轴离最近的对称中心的距离为
(I)求的单调递增区间;
(II)在中角A、B、C的对边分别是
满足
恰是
的最大值,试判断
的形状.
正确答案
解:(Ⅰ)因为
的对称轴离最近的对称中心的距离为
所以,所以
,所以
解
得:
所以函数单调增区间为
(Ⅱ) 因为,由正弦定理,
得
因为
,所以
所以
,所以
所以
根据正弦函数的图象可以看出,无最小值,有最大值
,
此时,即
,所以
所以为等边三角形
解析
见答案
考查方向
本题主要考查正弦定理和余弦定理的性质,属于基础题
解题思路
根据题意换成三角函数一般形式,然后根据函数最值判断,第二问求出ABC角度的大小进而判定三角形形状。
易错点
混淆两个定理的性质
知识点
扫码查看完整答案与解析