- 函数的基本性质
- 共1843题
已知函数 ,且
( )
正确答案
解析
由得
解得
,所以
,由
得
,即
,故选C
知识点
函数的单调递增区间是 。
正确答案
解析
略
知识点
设a>0 a≠1 ,则“函数f(x)= ax在R上是减函数 ”,是“函数g(x)=(2-a) 在R上是增函数”的
正确答案
解析
p:“函数f(x)= ax在R上是减函数 ”等价于;q:“函数g(x)=(2-a)
在R上是增函数”等价于
,即
且a≠1,故p是q成立的充分不必要条件. 答案选A。
知识点
已知直线过点
和
(
),
则直线斜率的取值范围是 ,
倾斜角的取值范围是 。
正确答案
,
解析
略
知识点
设是定义在区间
上的函数,其导函数为
。如果存在实数
和函数
,其中
对任意的
都有
>0,使得
,则称函数
具有性质
。
(1)设函数,其中
为实数。
(i)求证:函数具有性质
; (ii)求函数
的单调区间。
(2)已知函数具有性质
。给定
设
为实数,
,
,且
,
若||<|
|,求
的取值范围。
正确答案
见解析。
解析
(1)(i)
∵时,
恒成立,
∴函数具有性质
;
(ii)(方法一)设,
与
的符号相同。
当时,
,
,故此时
在区间
上递增;
当时,对于
,有
,所以此时
在区间
上递增;
当时,
图像开口向上,对称轴
,而
,
对于,总有
,
,故此时
在区间
上递增;
(方法二)当时,对于
,
所以,故此时
在区间
上递增;
当时,
图像开口向上,对称轴
,方程
的两根为:
,而
当时,
,
,故此时
在区间
上递减;同理得:
在区间
上递增。
综上所述,当时,
在区间
上递增;
当时,
在
上递减;
在
上递增。
(2)(方法一)由题意,得:
又对任意的
都有
>0,
所以对任意的都有
,
在
上递增。
又。
当时,
,且
,
综合以上讨论,得:所求的取值范围是(0,1)。
(方法二)由题设知,的导函数
,其中函数
对于任意的
都成立。所以,当
时,
,从而
在区间
上单调递增。
①当时,有
,
,得
,同理可得
,所以由
的单调性知
、
,
从而有||<|
|,符合题设。
②当时,
,
,于是由
及
的单调性知
,所以|
|≥|
|,与题设不符。
③当时,同理可得
,进而得|
|≥|
|,与题设不符。
因此综合①、②、③得所求的的取值范围是(0,1)。
知识点
已知函数
(1)求函数的单调区间;
(2)如果关于x的方程有实数根,求实数
的取值集合;
(3)是否存在正数,使得关于x的方程
有两个不相等的实数根?如果存在,求
满足的条件;如果不存在,说明理由.
正确答案
见解析。
解析
(1)函数的定义域是
对求导得
由 ,由
因此 是函数
的增区间;
(-1,0)和(0,3)是函数的减区间
(2)因为
所以实数m的取值范围就是函数的值域
对
令
∴当x=2时取得最大值,且
又当x无限趋近于0时,无限趋近于
无限趋近于0,
进而有无限趋近于-∞.因此函数
的值域是
,即实数m的取值范围是
(3)结论:这样的正数k不存在。
下面采用反证法来证明:假设存在正数k,使得关于x的方程
有两个不相等的实数根
,则
根据对数函数定义域知都是正数。
又由(1)可知,当时,
∴=
,
=
,
再由k>0,可得
由于 不妨设
,
由①和②可得
利用比例性质得
即
由于上的恒正增函数,且
又上的恒正减函数,且
∴
∴,这与(*)式矛盾。
因此满足条件的正数k不存在
知识点
若函数的定义域为实数集
,则实数
的取值范围为
正确答案
解析
略
知识点
已知直线为参数)与直线
相交于点
,又点
,则
______.
正确答案
解析
略
知识点
一名工人维护甲、乙两台独立的机床,在一小时内,甲、乙需要维护的概率分别为0.9、0.8,则一小时内有机床需要维护的概率为_____
正确答案
0.98
解析
略
知识点
设函数,
;
,
.
(1)求函数的单调区间;
(2)当时,求函数
的最大值;
(3)设,且
,
,证明:
.
正确答案
见解析。
解析
(1)显然的定义域为
,
,
令,
ⅰ)当时:在区间
上,
恒成立,故
的增区间为
;
ⅱ)当时:在区间
上,
恒成立,故
的减区间为
;
在区间上,
恒成立,故
的增区间为
.
(2)ⅰ)时,
,所以
;
ⅱ)时,易知
,
于是:,
,
由(1)可知, 下证
,
即证明不等式在
上恒成立。
(法一)由上可知:不等式在
上恒成立,
若,则
,
故,
即当时,
,从而
,
故当时,
恒成立,即
.
(法二)令,
,则
,列表
如下:
由表可知:当
时,
,
即恒成立,即
.
由于,且
,
故函数区间
内必存在零点。
又当时,
,
于是指数函数为增函数
为增函数,
同理当时,
,
于是指数函数为减函数
也为增函数,
于是,当时,
必为增函数,
从而函数在区间
内必存在唯一零点,不妨记为
,则
,
易知当时,
,此时
单调递减;
当时,
,此时
单调递增,
又易知,故
;
综上,当时,
在
上的最大值为
.
(3)证法一:令, 显然有:
,
,
则不等式.
注意到:,且
,
,即
,且
,
于是,
,
故,
从而,即
,又
,
故原不等式成立,证毕.
证法二:同上可将不等式化为:
,
即,令
,则等价于证明:当
时,有
成立,
又,
故,
于是,即
得证,
又,故原不等式
成立,证毕。
知识点
扫码查看完整答案与解析