热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

20.已知一企业生产某产品的年固定成本为10万元,每生产千件需另投入2.7万元,设该企业年内共生产此种产品千件,并且全部销售完,每千件的销售收入为万元,且

(1)写出年利润(万元)关于年产品(千件)的函数解析式;

(2)年产量为多少千件时,该企业生产此产品所获年利润最大?(注:年利润=年销售收入-年总成本)

正确答案

(1)当时,

                   当时,

                   

(2)①当时,由,得且当时,

            当时,

           时,取最大值,且

        ②当时,

           当且仅当,即时,

           综合①、②知时,取最大值.

        所以为9千件时,该企业生产此产品获利最大.

解析

解析已在路上飞奔,马上就到!

知识点

函数的最值及其几何意义函数模型的选择与应用利用基本不等式求最值
1
题型:简答题
|
简答题 · 13 分

19.某化工厂生产某种产品,每件产品的生产成本是3元,根据市场调查,预计每件产品的出厂价为x元(7≤x≤10)时,一年的产量为(11-x)2万件;若该企业所生产的产品全部销售,则称该企业正常生产;但为了保护环境,用于污染治理的费用与产量成正比,比例系数为常数a(1≤a≤3)。

(1)求该企业正常生产一年的利润L(x)与出厂价x的函数关系式;

(2)当每件产品的出厂价定为多少元时,企业一年的利润最大,并求最大利润。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

函数的最值及其几何意义函数模型的选择与应用
1
题型:简答题
|
简答题 · 16 分

21.两城市A和B相距20km,现计划在两城市外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065

  

(1)将y表示成x的函数;

(2)判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由

正确答案

(1)由题意得

又∵当时,

(2)

当且仅当时,等号成立. 

∴弧AB上存在一点,该点到城A的距离为时,使建在此处的垃圾处理厂对城A和城B的总影响度最小为0.0625

解析

解析已在路上飞奔,马上就到!

知识点

函数解析式的求解及常用方法函数模型的选择与应用基本不等式的实际应用
1
题型:简答题
|
简答题 · 12 分

21.已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元。设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且

(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;

(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?

(注:年利润=年销售收入—年总成本)

正确答案

解:(1)当

  

(2)①当

②当时,

综合①②知当时,W取最大值38.6万元,故当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大。

解析

解析已在路上飞奔,马上就到!

知识点

函数的最值及其几何意义分段函数模型函数模型的选择与应用
1
题型:简答题
|
简答题 · 14 分

18.某房地产开发公司计划在一楼区内建造一个长方形公园,公园由长方形的休闲区和环公园人行道(阴影部分)组成。已知休闲区的面积为平方米,人行道的宽分别为米和米(如图)

(1)若设休闲区的长和宽的比,求公园所占面积关于的函数的解析式;

(2)要使公园所占面积最小,休闲区的长和宽(长>宽)该如何设计?

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

函数模型的选择与应用基本不等式的实际应用
1
题型:简答题
|
简答题 · 12 分

18.某跨国饮料公司在对全世界所有人均GDP(即人均纯收入)在0.5千美元~8千美元的地区销售该公司饮料的情况的调查中发现:人均GDP处在中等的地区对该饮料的销售量最多,然后向两边递减。

(1)下列几个模拟函数中表示人均GDP,单位:千美元,表示年人均饮料的销量,单位:升),用哪个模拟函数来描述人均饮料销量与地区的人均关系更合适?说明理由。

   ①     ②

   ③,④

(2)若人均GDP为1千美元时,年人均饮料的销量为2升;若人均GDP为4千美元时,年人均饮料的销量为5升,把(1)中你所选的模拟函数求出来,并求出各个地区中,年人均饮料的销量最多是多少?

(3)因为饮料在国被检测出杀虫剂的含量超标,受此事件的影响,饮料在人均GDP低于3千美元和高于6千美元的地区销量下降5%,其它地区的销量下降10%,根据(2)所求出的模拟函数,求出各个地区中,年人均饮料的销量最多是多少?

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

函数的最值及其几何意义函数模型的选择与应用
1
题型:简答题
|
简答题 · 14 分

18.如图,ABCD是正方形空地,边长为30m,电源在点P处,点P到边AD,AB距离分别为m,m.某广告公司计划在此空地上竖一块长方形液晶广告屏幕.线段MN必须过点P,端点M,N分别在边AD,AB上,设AN=x(m),液晶广告屏幕MNEF的面积为S(m2).

(1)求S关于x的函数关系式及该函数的定义域;

(2)当x取何值时,液晶广告屏幕MNEF的面积S最小?

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

函数的定义域及其求法函数解析式的求解及常用方法函数模型的选择与应用
1
题型:简答题
|
简答题 · 13 分

19. 张家界某景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值万元与投入万元之间满足:为常数。当万元时,万元;当万元时,万元。(参考数据:

(1)求的解析式;

(2)求该景点改造升级后旅游利润的最大值。(利润=旅游增加值-投入)

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

函数的最值及其几何意义函数模型的选择与应用导数的运算
1
题型:简答题
|
简答题 · 13 分

20.为了加强环保建设,提高社会效益和经济效益,长沙市计划用若干时间更换一万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,替换车为电力型和混合动力型车.今年初投入了电力型公交车128辆,混合动力型公交车400辆;计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a辆.

(1)求经过n年,该市被更换的公交车总数S(n);

(2)若该市计划7年内完成全部更换,求a的最小值.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

函数模型的选择与应用等差数列与等比数列的综合
1
题型:简答题
|
简答题 · 14 分

20.某工厂去年某产品的年产量为100万只,每只产品的销售价为10元,固定成本为8元.今年,工厂第一次投入100万元(科技成本),并计划以后每年比上一年多投入100万元(科技成本),预计产量年递增10万只,第n次投入后,每只产品的固定成本为(k>0,k为常数,且n≥0),若产品销售价保持不变,第n次投入后的年利润为万元.

(1)求k的值,并求出的表达式;

(2)问从今年算起第几年利润最高?最高利润为多少万元?

正确答案

(1)由,当n=0时,由题意,可得k=8,

所以

(2)由

当且仅当,即n=8时取等号,所以第8年工厂的利润最高,最高为520万元

解析

解析已在路上飞奔,马上就到!

知识点

函数模型的选择与应用基本不等式的实际应用
百度题库 > 高考 > 理科数学 > 函数模型的选择与应用

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题