- 函数模型的选择与应用
- 共46题
20.已知一企业生产某产品的年固定成本为10万元,每生产千件需另投入2.7万元,设该企业年内共生产此种产品千件,并且全部销售完,每千件的销售收入为万元,且
(1)写出年利润(万元)关于年产品(千件)的函数解析式;
(2)年产量为多少千件时,该企业生产此产品所获年利润最大?(注:年利润=年销售收入-年总成本)
正确答案
(1)当时,,
当时,,
(2)①当时,由,得且当时,;
当时,;
当时,取最大值,且
②当时,
当且仅当,即时,
综合①、②知时,取最大值.
所以为9千件时,该企业生产此产品获利最大.
解析
解析已在路上飞奔,马上就到!
知识点
19.某化工厂生产某种产品,每件产品的生产成本是3元,根据市场调查,预计每件产品的出厂价为x元(7≤x≤10)时,一年的产量为(11-x)2万件;若该企业所生产的产品全部销售,则称该企业正常生产;但为了保护环境,用于污染治理的费用与产量成正比,比例系数为常数a(1≤a≤3)。
(1)求该企业正常生产一年的利润L(x)与出厂价x的函数关系式;
(2)当每件产品的出厂价定为多少元时,企业一年的利润最大,并求最大利润。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
21.两城市A和B相距20km,现计划在两城市外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065
(1)将y表示成x的函数;
(2)判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由
正确答案
(1)由题意得,
又∵当时,,
∴
∴
(2),
令,
则,
当且仅当时,等号成立.
∴弧AB上存在一点,该点到城A的距离为时,使建在此处的垃圾处理厂对城A和城B的总影响度最小为0.0625
解析
解析已在路上飞奔,马上就到!
知识点
21.已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元。设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且
(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?
(注:年利润=年销售收入—年总成本)
正确答案
解:(1)当;
(2)①当,
②当时,
综合①②知当时,W取最大值38.6万元,故当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大。
解析
解析已在路上飞奔,马上就到!
知识点
18.某房地产开发公司计划在一楼区内建造一个长方形公园,公园由长方形的休闲区和环公园人行道(阴影部分)组成。已知休闲区的面积为平方米,人行道的宽分别为米和米(如图)
(1)若设休闲区的长和宽的比,求公园所占面积关于的函数的解析式;
(2)要使公园所占面积最小,休闲区的长和宽(长>宽)该如何设计?
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
18.某跨国饮料公司在对全世界所有人均GDP(即人均纯收入)在0.5千美元~8千美元的地区销售该公司饮料的情况的调查中发现:人均GDP处在中等的地区对该饮料的销售量最多,然后向两边递减。
(1)下列几个模拟函数中表示人均GDP,单位:千美元,表示年人均饮料的销量,单位:升),用哪个模拟函数来描述人均饮料销量与地区的人均关系更合适?说明理由。
① ②
③,④。
(2)若人均GDP为1千美元时,年人均饮料的销量为2升;若人均GDP为4千美元时,年人均饮料的销量为5升,把(1)中你所选的模拟函数求出来,并求出各个地区中,年人均饮料的销量最多是多少?
(3)因为饮料在国被检测出杀虫剂的含量超标,受此事件的影响,饮料在人均GDP低于3千美元和高于6千美元的地区销量下降5%,其它地区的销量下降10%,根据(2)所求出的模拟函数,求出各个地区中,年人均饮料的销量最多是多少?
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
18.如图,ABCD是正方形空地,边长为30m,电源在点P处,点P到边AD,AB距离分别为m,m.某广告公司计划在此空地上竖一块长方形液晶广告屏幕,.线段MN必须过点P,端点M,N分别在边AD,AB上,设AN=x(m),液晶广告屏幕MNEF的面积为S(m2).
(1)求S关于x的函数关系式及该函数的定义域;
(2)当x取何值时,液晶广告屏幕MNEF的面积S最小?
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
19. 张家界某景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值万元与投入万元之间满足:为常数。当万元时,万元;当万元时,万元。(参考数据:)
(1)求的解析式;
(2)求该景点改造升级后旅游利润的最大值。(利润=旅游增加值-投入)
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20.为了加强环保建设,提高社会效益和经济效益,长沙市计划用若干时间更换一万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,替换车为电力型和混合动力型车.今年初投入了电力型公交车128辆,混合动力型公交车400辆;计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a辆.
(1)求经过n年,该市被更换的公交车总数S(n);
(2)若该市计划7年内完成全部更换,求a的最小值.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20.某工厂去年某产品的年产量为100万只,每只产品的销售价为10元,固定成本为8元.今年,工厂第一次投入100万元(科技成本),并计划以后每年比上一年多投入100万元(科技成本),预计产量年递增10万只,第n次投入后,每只产品的固定成本为(k>0,k为常数,且n≥0),若产品销售价保持不变,第n次投入后的年利润为万元.
(1)求k的值,并求出的表达式;
(2)问从今年算起第几年利润最高?最高利润为多少万元?
正确答案
(1)由,当n=0时,由题意,可得k=8,
所以.
(2)由
.
当且仅当,即n=8时取等号,所以第8年工厂的利润最高,最高为520万元
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析