- 函数模型的选择与应用
- 共46题
19.某工厂生产某种产品,每日的成本C(单位:元)与日产里(单位:吨)满足函数关系式,每日的销售额(单位:元)与日产量满足函数关系式
已知每日的利润,且当时.
(Ⅰ)求的值;
(Ⅱ)当日产量为多少吨时,毎日的利润可以达到最大,并求出最大值。
正确答案
解:(Ⅰ)由题意可得:
解析
解析已在路上飞奔,马上就到!
知识点
20.某车间有50名工人,要完成150件产品的生产任务,每件产品由3个型零件和1个型零件配套组成,每个工人每小时能加工5个型零件或者3个型零件,现在把这些工人分成两组同时工作(分组后人数不再进行调整),每组加工同一种型号的零件.设加工型零件的工人人数为名(N).
(1)设完成、B型零件加工所需时间分别为、小时,写出和的解析式;
(2)为了在最短时间内完成全部生产任务,应取何值,最短时间是多少?
正确答案
(1)生产150件产品,需加工A型零件450个,
则完成A型零件加工所需时间
生产150件产品,需加工型零件150个,
则完成型零件加工所需时间
(2)设完成全部生产任务所需时间为小时,则为与的较大者.
令,即,解得.
所以,当时,;当时,.
故.
当时,,故在上单调递减,
则在上的最小值为(小时);
当时,,故在上单调递增,
则在上的最小值为(小时);
,在上的最小值为
解析
解析已在路上飞奔,马上就到!
知识点
21.有一种变压器铁芯的截面呈如图所示的正十字形,为保证所需的磁通量,要求正十字形的面积为4cm2,为了使用来绕铁芯的铜线最省,即正十字形外接圆周长最短,应如何设计 正十字形的长(如DG),和宽(如AB)?
正确答案
设外接圆半径为R,AB =x(0<x<R),DG =y,则4R2=x2+y2 (1),
由已知条件有2xy-x2=4,∴y= (2),
代入(1)得4R2= x2 +。
∴4R2==10+。
当且仅当,即x=2时,等号成立。
代入(2)得y=1+,
∴当 x=2 且y=1+时,4R2有最小值,
此时正十字形外接圆周长最短。
答:正十字形的长和宽分别为(1+)cm和2cm时,用来绕铁芯的铜线最省。
解析
解析已在路上飞奔,马上就到!
知识点
19.请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=cm.
(1)若广告商要求包装盒侧面积S(cm)最大,试问应取何值?
(2)若广告商要求包装盒容积V(cm)最大,试问应取何值?并求出此时包装盒的高与底面边长的比值.
正确答案
解:(1)由题意知, 包装盒的底面边长为,高为,所以包装盒侧面积为S==,当且仅当,即时,等号成立,所以若广告商要求包装盒侧面积S(cm)最大,应15cm.
(2)包装盒容积V==,
所以=,令得; 令得,
所以当时, 包装盒容积V取得最大值,此时的底面边长为,高为,包装盒的高与底面边长的比值为.
解析
解析已在路上飞奔,马上就到!
知识点
20.已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为万元,且
(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大。(注:年利润一年销售收入一年总成本)
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
19.某公司研发甲、乙两种新产品,根据市场调查预测,甲产品的利润y(单位:万元)与投资(单位:万元)满足:(为常数),且曲线与直线在(1,3)点相切;乙产品的利润与投资的算术平方根成正比,且其图像经过点(4,4).
(I)分别求甲、乙两种产品的利润与投资资金间的函数关系式;
(II)已知该公司已筹集到40万元资金,并将全部投入甲、乙两种产品的研发,每种产品投资均不少于10万元.问怎样分配这40万元投资,才能使该公司获得最大利润?其最大利润约为多少万元?
(参考数据:)
正确答案
所以:当甲产品投资15万元,
乙产品投资25万元时,
公司取得最大利润。
最大利润为21.124万元
解析
解析已在路上飞奔,马上就到!
知识点
21.政府决定用“对社会的有效贡献率”对企业进行评价用表示某企业第年投入的治理污染的环保费用,用表示该企业第年的产值设(万元),以后治理污染的环保费用每年都比上一年增加(万元);又设(万元,且企业的产值每年比上一年的平均增长率为,用表示企业第年“对社会的有效贡献率”。
(1)求该企业第一年和第二年的“对社会的有效贡献率”;
(2)试问:从第几年起该企业“对社会的有效贡献率”不低于?
正确答案
(1)因为 ,
根据题意:,,
所以 ,,
该企业第一年和第二年的“对社会的有效贡献率”分别为和;
(2)因为 , ,
所以 ,下证: 为增函数:
证法1:, , 则 为增函数;
证法2:,∴,则 为增函数,
再验证: , ,
故,从第七年起该企业“对社会的有效贡献率”不低于
解析
解析已在路上飞奔,马上就到!
知识点
20.为了提高产品的年产量,某企业拟在2014年进行技术改革,经调查测算,产品当年的产量万件与投入技术改革费用万元()满足(为常数).如果不搞技术改革,则该产品当年的产量只能是1万件.已知2014年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元.由于市场行情较好,厂家生产产品均能销售出去,厂家将每件产品的销售价格定为每件产品生产成本的1.5倍(生产成本包括固定投入和再投入两部分资金)
(1)试确定的值,并将2014年该产品的利润万元表示为技术改革费用万元的函数(利润=销售金额﹣生产成本﹣技术改革费用);
(2)该企业2014年的技术改革费用投入多少万元时,厂家的利润最大?并求出最大利润.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
8. 某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获利5万元,每吨乙产品可获利3万元。该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨,那么该企业在一个生产周期内可获得的最大利润是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20.某汽车销售公司为促销采取了较灵活的付款方式,对购买10万元一辆的轿车在一年内将款全部付清的前提下,可以选择以下两种分期付款方案购车:
方案1:分3次付清,购买后4个月第一次付款,再过4个月第二次付款,再过4个月第三次付款.
方案2:分12次付清,购买后1个月第一次付款,再过1个月第二次付款,……购买后12个月第十二次付款。
现规定分期付款中,每期付款额相同,月利率为0.8%,每月利息按复利计息,试比较以上两种方案的哪一种方案付款总数较少?(参考数据:1.0083=1.024,1.0084=1.033,1.00811=1.092,1.00812=1.1)
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析