- 直线与圆相交的性质
- 共47题
16.若不等式≤k(x+2)-
的解集为区间[a,b],且b-a=2,则k=_______.
正确答案
解析
令y1=,y2=k(x+2)-
,其中-3≤x≤3,在同一个坐标系中作出y1,y2的图象,如图所示.
由≤k(x+2)-
的解集为[a,b],且b-a=2,
结合图象知b=3,a=1,即直线y2与圆y1的交点坐标为(1,2).
又因为点(-2,-)在直线y2上,
所以k==
知识点
14.已知圆O:,点M(1,0)圆内定点,过M作两条互相垂直的直线与圆O交于AB、CD,求弦长AC长的取值范围___________
正确答案
解析
设AC中点P(x,y)OP⊥AP,
AC=2PM,PM∈[,
]AC∈
考查方向
解题思路
本题考查运用曲线的方程与几何图形知识解决问题的能力,先设AC中点P(x,y)OP⊥AP,AP=
AC=2PM,PM∈[,
]AC∈
易错点
本题必须运用几何性质找曲线的方程,否则无从下手。
知识点
23.已知直线、
与曲线
分别相交于点
、
和
、
,我们将四边形
称为曲线
的内接四边形.
(1)若直线和
将单位圆
分成长度相等的四段弧,求
的值;
(2)若直线与圆
分别交于点
、
和
、
,求证:四边形
为正方形;
(3)求证:椭圆的内接正方形有且只有一个,并求该内接正方形的面积.
正确答案
(1)2;
(2)证明略;
(3)证明略,面积为.
解析
(1)由于直线和
将单位圆
分成长度相等的四段弧,
所以,
在等腰直角中,
圆心到直线
的距离为
,
,同理
,
(2)由题知,直线关于原点对称,
因为圆的圆心为原点
,
所以,
故四边形为平行四边形.
易知,点在对角线
上.
联立解得
,
由得
,
所以,
于是,
因为,
所以四边形为正方形.
(3)证明:假设椭圆存在内接正方形,其四个顶点为
.
当直线的斜率不存在时,
设直线、
的方程为
,
因为在椭圆上,
所以,
由四边形为正方形,易知,
,
直线、
的方程为
,
正方形的面积
.
当直线的斜率存在时,
设直线、
的方程分别为
,
显然.
设,
联立得
,
所以
代人,得
,
同理可得
,
因为为正方形,
所以
解得
因为,所以
,
因此,直线与直线
关于原点
对称,
所以原点为正方形的中心
(由知
,四边形
为平行四边形)
由为正方形知
,
即
代人得,解得
(注:此时四边形
为菱形)
由为正方形知
,
因为直线与直线
的距离为
,
故
但,
由得
即
,与
矛盾.
所以,这与
矛盾.
即当直线的斜率
存在时,椭圆内不存在正方形.
综上所述,椭圆的内接正方形有且只有一个,且其面积为
.
考查方向
本题主要考查直线与圆锥曲线的综合应用,考查学生分析问题解决问题的能力、逻辑推理能力,是难题.解析几何的综合应用在近几年各省市的高考试卷中频频出现,是高考的热点问题,往往以直线、圆、椭圆、双曲线、抛物线为载体,涉及各类曲线的定义与方程、各类曲线的性质,与曲线的轨迹方程的求解、直线与圆锥曲线的位置关系等知识交汇命题.
解题思路
题(1),先找到两直线分单位圆成长度相等的四段弧的位置,求得所截得的弦长,然后利用原点到直线距离公式求得的值,从而求得
的值;
题(2),先证四边形为平行四边形,再证对角线垂直且相等,从而证得四边形
为正方形;
题(3),分类讨论说明椭圆的内接正方形有且只有一个.
易错点
找不到直线与圆或者椭圆的正确的位置关系,从而无法解题.
知识点
14. 已知过点的直线
被圆
所截得的弦长为8,则直线
的方程为 。
正确答案
4x+3y+21=0或x=-3
解析
1、由圆得其标准方程:
,由弦长为8,所以圆心到直线的距离为3。
2、当直线的斜率不存在时,即方程x=-3 ,符合题设;当直线
的斜率存在时,可设其方程为:
,由点到直线的距离公式得:
,即方程为:4x+3y+21=0。
考查方向
解题思路
本题考查直线与圆的位置关系,解题步骤如下:把圆由一般方程化为标准方程,再结合垂径定理计算出圆心到直线的距离。设出直线方程(点斜式)要注意分类讨论,即分斜率存在与不存在.
易错点
本题必须注意斜率是否存在,易漏解。
知识点
6.已知圆, 直线
,
,若
被圆
所截得的弦的长度之比为
,则
的值为( )
正确答案
解析
被圆c截得的弦长为
。所以
被圆c截得的弦长为4.即为直径,
恒过点(0,-1)且过圆心(2,0)所以k=
.选C。
考查方向
本题主要考查了直线与圆的位置关系问题,属于中档题,是高考的热点,解决此类题的关键会用直线与圆的位置关系计算弦长。
易错点
本题易在计算弦长时发生错误,导致题目错误。
知识点
扫码查看完整答案与解析