- 点到直线的距离公式
- 共31题
请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。
正确答案
测试
请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。
正确答案
测试
在极坐标系中,点到直线ρsin θ=2的距离等于__________。
正确答案
1
解析
在极坐标系中,点对应直角坐标系中坐标为(,1),直线ρsin θ=2对应直角坐标系中的方程为y=2,所以点到直线的距离为1.
知识点
如图,已知椭圆与的中心在坐标原点,长轴均为且在轴上,短轴长分别
为,,过原点且不与轴重合的直线与,的四个交点按纵坐标从
大到小依次为A,B,C,D,记,△和△的面积分别为和.
(1)当直线与轴重合时,若,求的值;
(2)当变化时,是否存在与坐标轴不重合的直线l,使得?并说明理由。
正确答案
(1);(2)当1<λ≤时,不存在与坐标轴不重合的直线l,使得S1=λS2;当λ>时,存在与坐标轴不重合的直线l使得S1=λS2.
解析
依题意可设椭圆C1和C2的方程分别为
C1:,C2:.
其中a>m>n>0,λ=.
(1)解法1:
如图1,若直线l与y轴重合,即直线l的方程为x=0,则S1=|BD|·|OM|=a|BD|,S2=|AB|·|ON|=a|AB|,
所以.
在C1和C2的方程中分别令x=0,可得yA=m,yB=n,yD=-m,
于是.
若,则,化简得λ2-2λ-1=0.
由λ>1,可解得λ=.
故当直线l与y轴重合时,若S1=λS2,则λ=.
解法2:如图1,若直线l与y轴重合,则
|BD|=|OB|+|OD|=m+n,|AB|=|OA|-|OB|=m-n;
S1=|BD|·|OM|=a|BD|,
S2=|AB|·|ON|=a|AB|。
所以.
若,则,化简得λ2-2λ-1=0.
由λ>1,可解得λ=.
故当直线l与y轴重合时,若S1=λS2,则λ=.
(2)解法1:
如图2,若存在与坐标轴不重合的直线l,使得S1=λS2.根据对称性,不妨设直线l:y=kx(k>0),点M(-a,0),N(a,0)到直线l的距离分别为d1,d2,则,,所以d1=d2.
又S1=|BD|d1,S2=|AB|d2,所以,即|BD|=λ|AB|。
由对称性可知|AB|=|CD|,所以|BC|=|BD|-|AB|=(λ-1)|AB|,
|AD|=|BD|+|AB|=(λ+1)|AB|,于是
.①
将l的方程分别与C1,C2的方程联立,可求得
,.
根据对称性可知xC=-xB,xD=-xA,于是
=.②
从而由①和②式可得
.③
令,则由m>n,可得t≠1,于是由③可解得.
因为k≠0,所以k2>0.于是③式关于k有解,当且仅当,
等价于由λ>1,可解得<t<1,
即,由λ>1,解得λ>,所以
当1<λ≤时,不存在与坐标轴不重合的直线l,使得S1=λS2;
当λ>时,存在与坐标轴不重合的直线l使得S1=λS2.
解法2:如图2,若存在与坐标轴不重合的直线l,使得S1=λS2.根据对称性,不妨设直线l:y=kx(k>0),
点M(-a,0),N(a,0)到直线l的距离分别为d1,d2,
则,,所以d1=d2.
又S1=|BD|d1,S2=|AB|d2,所以.
因为,所以.
由点A(xA,kxA),B(xB,kxB)分别在C1,C2上,可得,,两式相减可得,
依题意xA>xB>0,所以.所以由上式解得.
因为k2>0,所以由,可解得.
从而,解得λ>,所以
当1<λ≤时,不存在与坐标轴不重合的直线l,使得S1=λS2;
当λ>时,存在与坐标轴不重合的直线l使得S1=λS2.
知识点
定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x 2+a到直线l:y=x的距离等于C2:x 2+(y+4) 2 =2到直线l:y=x的距离,
则实数a=______________。
正确答案
解析
C2:x 2+(y+4) 2 =2,圆心(0,—4),圆心到直线l:y=x的距离为:,故曲线C2到直线l:y=x的距离为。
另一方面:曲线C1:y=x 2+a,令,得:,曲线C1:y=x 2+a到直线l:y=x的距离的点为(,),。
知识点
扫码查看完整答案与解析