- 概率与统计
- 共1631题
某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费和年销售量
数据作了初步处理,得到下面的散点图及一些统计量的值.表中w1 =
1, ,
=
22.根据散点图判断,与
,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);
23.根据(I)的判断结果及表中数据,建立y关于x的回归方程;
24.已知这种产品的年利润z与x,y的关系为 ,根据(II)的结果回答下列问题:
(i)当年宣传费时,年销售量及年利润的预报值时多少?
(ii)当年宣传费为何值时,年利润的预报值最大?
附:对于一组数据,
,……,
,其回归线
的斜率和截距的最小二乘估计分别为:
,
正确答案
(Ⅰ)适合作为年销售
关于年宣传费用
的回归方程类型;
解析
(Ⅰ)由散点图可以判断,适合作为年销售
关于年宣传费用
的回归方程类型.
考查方向
解题思路
试题分析:(Ⅰ)由散点图及所给函数图像即可选出适合作为拟合的函数;
易错点
本题在寻求拟合函数比较易错
正确答案
(Ⅱ)
解析
(Ⅱ)令,先建立
关于
的线性回归方程,由于
=
,
∴=563-68×6.8=100.6.
∴关于
的线性回归方程为
,
∴关于
的回归方程为
.
考查方向
易错点
在非线性回归方程进行预报预测;应用易错.
正确答案
(Ⅲ)46.24
解析
(Ⅲ)(ⅰ)由(Ⅱ)知,当=49时,年销售量
的预报值
=576.6,
.
(ⅱ)根据(Ⅱ)的结果知,年利润z的预报值
,
∴当=
,即
时,
取得最大值.
故宣传费用为46.24千元时,年利润的预报值最大.……12分
考查方向
解题思路
(Ⅲ)(ⅰ)利用关于
的回归方程先求出年销售量
的预报值,再根据年利率z与x、y的关系为z=0.2y-x即可年利润z的预报值;(ⅱ)根据(Ⅱ)的结果知,年利润z的预报值,列出关于
的方程,利用二次函数求最值的方法即可求出年利润取最大值时的年宣传费用.
易错点
在非线性回归方程进行预报预测;应用易错.
某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费和年销售量
(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。
表中w1 =1, ,
=
1
21.根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
22.根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
23.以知这种产品的年利率z与x、y的关系为z=0.2y-x。根据(Ⅱ)的结果回答下列问题:
(i) 年宣传费x=49时,年销售量及年利润的预报值是多少?
(ii) 年宣传费x为何值时,年利率的预报值最大?
附:对于一组数据(u1 v1),(u2 v2)…….. (un vn),其回归线v=u的斜率和截距的最小二乘估计分别为:
正确答案
正确答案
正确答案
国内某知名大学有男生14000人,女生10000人.该校体育学院想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取120人,统计他们平均每天运动的时间,如下表:(平均每天运动的时间单位:小时,该校学生平均每天运动的时间范围是
.)
男生平均每天运动的时间分布情况:
女生平均每天运动的时间分布情况:
19.请根据样本估算该校男生平均每天运动的时间(结果精确到);
20.若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生
为“非运动达人”.
①请根据样本估算该校“运动达人”的数量;
②请根据上述表格中的统计数据填写下面列联表,并通过计算判断能否在犯错
误的概率不超过的前提下认为“是否为‘运动达人’与性别有关?”
参考公式:,其中
参考数据:
正确答案
(1) 小时;
解析
(Ⅰ)由分层抽样得:男生抽取的人数为人,女生抽取人数为
人,故
5,
2,
则该校男生平均每天运动的时间为:
,
故该校男生平均每天运动的时间约为小时;
考查方向
解题思路
根据题中给出的数据估计该校男生平均每天运动的时间约为小时;
易错点
不会根据频率分布直方图估计平均数;
正确答案
(2) ①4000;
②故在犯错误的概率不超过
的前提下不能认为“是否为‘运动达人’与性别有关”
解析
(Ⅱ)①样本中“运动达人”所占比例是,故估计该校“运动达人”有
人;
②由表格可知:
故的观测值
故在犯错误的概率不超过的前提下不能认为“是否为‘运动达人’与性别有关”.
考查方向
解题思路
先列出列联表后计算判断即可。
易错点
处理数据列列联表出错。
正确答案
知识点
1.以下四个命题:
①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测 ,这样的抽样是分层抽样。
②两个随机变量相关性越强,则相关系数的绝对值越接近于1
③在回归直线方程中,当解释变量x每增加一个单位时,预报变量
平均增加0.2单位
④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越大
以上命题中,正确的是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
22.写出用二分法求方程x3-x-1=0在区间[1,1.5]上的一个解的算法(误差不超过0.001),并画出相应的程序框图及程序.
正确答案
用二分法求方程的近似值一般取区间[a,b]具有以下特征:
f(a)<0,f(b)>0.
由于f(1)=13-1-1=-1<0,
f(1.5)=1.53-1.5-1=0.875>0,
所以取[1,1.5]中点=1.25研究,以下同求x2-2=0的根的方法.
相应的程序框图是:
程序:a=1
b=1.5
c=0.001
DO
x=(a+b)2
f(a)=a∧3-a-1
f(x)=x∧3-x-1
IF f(x)=0 THEN
PRINT “x=”;x
ELSE
IF f(a)*f(x)<0 THEN
b=x
ELSE
a=x
END IF
END IF
LOOP UNTIL ABS(a-b)<=c
PRINT “方程的一个近似解x=”;x
END
解析
解析已在路上飞奔,马上就到!
知识点
9.在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
(1) 求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入。
附:回归直线的斜率和截距的最小二乘估计公式分别为:
正确答案
(1) 回归方程为=0.5t+2.3.
(2)预测该地区2015年农村居民家庭人均纯收入为6.8千元。
解析
知识点
设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据,用最小二乘法建立的回归方程为
,则下列结论中不正确的是
正确答案
解析
由回归方程为=0.85x-85.71知y随x的增大而增大,所以y与x具有正的线性相关关系,由最小二乘法建立的回归方程得过程知
,所以回归直线过样本点的中心
,利用回归方程可以预测估计总体,所以D不正确.
知识点
已知与
之间具有很强的线性相关关系,现观测得到
的四组观测值并制作了右边的对照表,由表中数据粗略地得到线性回归直线方程为
,其中
的值没有写上,当
不小于
时,预测
最大为 ;
正确答案
70
解析
略
知识点
某学生课外活动兴趣小组对两个相关变量收集到5组数据如下表:
由最小二乘法求得回归方程为,发现表中一个数据模糊不清,请推断该点数据的值为__
正确答案
68
解析
略
知识点
某工厂的某种型号机器的使用年限x和所支出的维修费用y(万元)有下表的统计资料:
根据上表可得回归方程,据此模型估计,该型号机器使用所限为10年维修费用约______万元(结果保留两位小数).
正确答案
解析
略
知识点
以下五个命题
①从匀速传递的产品生产流水线上,质检员每10分钟0020从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样
②样本方差反映了样本数据与样本平均值的偏离程度
③在回归分析模型中,残差平方和越小,说明模型的拟合效果越好
④在回归直线方程中,当解释变量x每增加一个单位时,预报变量
增加0.1个单位
⑤在一个2×2列联表中,由计算得k2=13.079,则其两个变量间有关系的可能性是90%以上.
其中正确的是
正确答案
解析
略
知识点
某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据:
根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程中的
的值为
,则记忆力为14的同学的判断力约为(附:线性回归方程
中,
,
其中,
为样本平均值)
正确答案
解析
略
知识点
已知x与y之间的几组数据如下表:
假设根据上表数据所得线性回归直线方程为,若某同学根据上表中的最后两组数据(5,2)和(6,0)求得的直线方程为
,则以下结论正确的是
正确答案
解析
略
知识点
扫码查看完整答案与解析