- 平面与平面垂直的判定与性质
- 共123题
如图,在直三棱柱中,
分别为
的中点,点
在侧棱
上,
且,
.
17.求证:直线平面
;
18. 求证:平面平面
.
正确答案
为中点,
为
的中位线
又为棱柱,
,又
平面
,且
平面
;
解析
为中点,
为
的中位线
又为棱柱,
,又
平面
,且
平面
;
考查方向
解题思路
易错点
判定定理的选用,线面关系的转化
正确答案
为直棱柱,
平面
,又
且,
平面
平面
,
又,
平面
又平面
,
又,
,且
平面
平面
,又
平面
平面
.
解析
为直棱柱,
平面
,又
且,
平面
平面
,
又,
平面
又平面
,
又,
,且
平面
平面
,又
平面
平面
.
考查方向
解题思路
易错点
判定定理的选用,线面关系的转化
如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.
19.证明:平面AEC⊥平面AFC;
20.求直线AE与直线CF所成角的余弦值.
正确答案
(Ⅰ)(Ⅰ)连接BD,设BD∩AC=G,连接EG,FG,EF,在菱形ABCD中,不妨设GB=1,由∠ABC=120°,可得AG=GC=.
由BE⊥平面ABCD,AB=BC可知,AE=EC,
又∵AE⊥EC,∴EG=,EG⊥AC,
在Rt△EBG中,可得BE=,故DF=
.
在Rt△FDG中,可得FG=.
在直角梯形BDFE中,由BD=2,BE=,DF=
可得EF=
,
∴,∴EG⊥FG,
∵AC∩FG=G,∴EG⊥平面AFC,
∵EG面AEC,∴平面AFC⊥平面AEC.
解析
见答案
考查方向
解题思路
(Ⅰ)连接BD,设BD∩AC=G,连接EG,FG,EF,在菱形ABCD中,不妨设GB=1易证EG⊥AC,通过计算可证EG⊥FG,根据线面垂直判定定理可知EG⊥平面AFC,由面面垂直判定定理知平面AFC⊥平面AEC;
易错点
本题在证明过程中推理不严密易错。
正确答案
(Ⅱ)
解析
(Ⅱ)如图,以G为坐标原点,分别以的方向为
轴,y轴正方向,
为单位长度,建立空间直角坐标系G-xyz,由(Ⅰ)可得A(0,-
,0),E(1,0,
),F(-1,0,
),C(0,
,0),∴
=(1,
,
),
=(-1,-
,
).…10分
故.
所以直线AE与CF所成的角的余弦值为.
考查方向
解题思路
(Ⅱ)以G为坐标原点,分别以的方向为
轴,y轴正方向,
为单位长度,建立空间直角坐标系G-xyz,利用向量法可求出异面直线AE与CF所成角的余弦值.
易错点
本题在写垂直的过程不能写全条件。
15.已知都是球
表面上的点,
平面
,
,
,
,
,则球
的表面积等于______.
正确答案
解析
试题分析:因为平面
,
,所以四面体
的外接球半径等于以长、宽、高分别为
三边长的长方体的外接球的半径.因为
,
,
,所以
=
=
,所以表面积为
.
考查方向
解题思路
首先根据已知条件求出圆的半径,进而可求出圆的表面积。
易错点
对相关知识但不熟悉下导致错误。
知识点
17.如图,在四棱锥中,底面
是平行四边形,
,侧面
底面
,
,
,
分别为
的中点,点
在线段
上.
(Ⅰ)求证:平面
;
(Ⅱ)若为
的中点,求证:
平面
;
(Ⅲ)当时,求四棱锥
的体积.
正确答案
(Ⅲ)四棱锥的体积为24.
解析
(Ⅰ)证明:在平行四边形中,因为
,
,
所以.
由分别为
的中点,得
,
所以.
因为侧面底面
,且
,
所以底面
.
又因为底面
,
所以.
又因为,
平面
,
平面
,
所以平面
.
(Ⅱ)证明:因为为
的中点,
分别为
的中点,
所以,
又因为平面
,
平面
,
所以
平面
.
同理,得平面
.
又因为,
平面
,
平面
,
所以平面平面
.
又因为平面
,
所以平面
.
(Ⅲ)解:在中,过
作
交
于点
(图略),
由,得
,
又因为,
所以,
因为底面
,
所以底面
,
所以四棱锥的体积
.
考查方向
解题思路
1、第一问由,
(通过
为底角为45度的等腰三角形得出)即可证
平面
;
2、第二问可通过证明平面MEF平行平面PAB得出平面
;也可以通过取PA中点N,连结MN,BN构造平行四边形MNBE得出
NB由线面平行判定得出
平面
。
3、由PA垂直平面ABCD为基础,通过作PA平行线得出四棱锥的高即可顺利解决问题,于是过
作
交
于点
即得到四棱锥的高,然后通过
,三角形MND与三角形PAD相似可得MN的值,进而求出四棱锥
的体积.
易错点
本题前两问中的证明过程要求严谨、完整,部分学生易书写的不规范、不完整而出错。
知识点
19.如图,四棱锥中,
底面
,
,底面
为梯形,
,
,
.
(1)求证:平面
平面
;
(2)求四棱锥的体积
.
正确答案
(1)见解析;
(2).
解析
试题分析:本题属于直线与平面垂直的性质、面面垂直的判定、棱锥的体积等知识点的综合应用问题,属于中档题,只要掌握相关的知识,即可解决本题,解析如下:
(1)证明:如图,∵PA⊥底面ABCD,∴PA⊥BC.
又AB⊥BC,PAAB=A,∴BC⊥平面PAB.
又BC平面PCB,∴平面PAB⊥平面PCB.
(2)解:∵PA⊥底面ABCD,∴PA⊥AD.
又PC⊥AD,∴AD⊥平面PAC,∴AC⊥AD.
在梯形ABCD中,由AB⊥BC,AB=BC,得,
∴.
又AC⊥AD,故△DAC为等腰直角三角形,
∴DC=2AB,∴,
.
考查方向
解题思路
(1)先由线面垂直的性质得,再结合已知条件可得
平面
,进而使问题得证;
(2)易证得为等腰直角三角形,从而求得
的长,进而求得四棱锥
的体积.
易错点
相关知识点不熟容易证错。
知识点
扫码查看完整答案与解析