- 三角形中的几何计算
- 共100题
9. 已知的三边长为
,则该三角形的外接圆半径等于________________
正确答案
解析
,
∴
∴
知识点
17.△ABC的内角A,B,C的对边分别别为a,b,c,已知
(I)求C;
(II)若的面积为
,求△ABC的周长.
正确答案
解(Ⅰ)∵2cos C(acosB+bcosA)=C
∴2cos C(sinAcos B+sinBcosA)=sinC
∴2cosC sin(A+B)=sinC
∴2cosC sinC =sin C
∴
∴
∴
(Ⅱ) ∵△ABC面积为且
∴即
∴
∵a+b=5
∴a+b+c=5+
∴△ABC周长为5+.
知识点
在△ABC中,角A,B,C所对的边分别是a,b,c,且.
19.证明:;
20.若,求
.
正确答案
(Ⅰ)根据正弦定理,可设=
=
=k(k>0).
则a=ksin A,b=ksin B,c=ksin C.
代入+
=
中,有
+
=
,变形可得
sin Asin B=sin Acos B+cos Asin B=sin(A+B).
在△ABC中,由A+B+C=π,有sin(A+B)=sin(π–C)=sin C,
所以sin Asin B=sin C.
解析
(I)证明:由正弦定理可知原式可以化解为
∵和
为三角形内角 , ∴
则,两边同时乘以
,可得
由和角公式可知,
原式得证。
考查方向
解题思路
本题考查正弦定理、余弦定理、商数关系等基础知识,考查学生的分析问题的能力和计算能力.在解三角形的应用中,凡是遇到等式中有边又有角时,可用正弦定理进行边角互化,一种是化为三角函数问题,一般是化为代数式变形问题.在角的变化过程中注意三角形的内角和为这个结论,否则难以得出结论.
易错点
本题考查正弦定理、余弦定理、商数关系等基础知识,在用化边为角的技巧应用中有时会发生错误。
正确答案
(Ⅱ)4.
解析
(II)由题,根据余弦定理可知,
∵为为三角形内角,
,
则,即
由(I)可知
,∴
∴
考查方向
解题思路
本题考查正弦定理、余弦定理、商数关系等基础知识,考查学生的分析问题的能力和计算能力.在解三角形的应用中,凡是遇到等式中有边又有角时,可用正弦定理进行边角互化,一种是化为三角函数问题,一般是化为代数式变形问题.在角的变化过程中注意三角形的内角和为这个结论,否则难以得出结论.
易错点
本题考查正弦定理、余弦定理、商数关系等基础知识,在用化边为角的技巧应用中有时会发生错误。
13.在 中,内角
所对的边分别为
,已知
的面积为
,
则
的值为 .
正确答案
8
解析
因为,所以
,
又,解方程组
得
,由余弦定理得
,所以
.
考查方向
解题思路
根据1.同角三角函数关系;2.三角形面积公式;3.余弦定理.结合已知条件构造方程组解出即可。
易错点
定理不熟悉。
知识点
12.若锐角的面积为
,且
,则
等于________.
正确答案
解析
由已知得的面积为
,所以
,
,所以
.由余弦定理得
,
.
考查方向
解题思路
利用三角形的面积公式求出A,再利用余弦定理求出BC.
易错点
计算能力弱,不会用余弦定理求三角形的面积
知识点
扫码查看完整答案与解析